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Abstruct : Effect and behavior of Al,SiC, added to the MgO-C brick were investigated and discussed. The
following conclusions were obtained.

(1) The mass and strength increase gradually and the porosity decreases in the MgO-C brick with addition of
AlLSiC, above 1000T.

(2) ALSIC, reacts with CO gas to form spinel (MgAl,0,) and SiC above 1000C. The formed SiC also reacts with
CO gas to form forsterite (Mg,SiO,) above 1200C. These reactions involve the increase of mass and volume
which cause the texture densification.

(3) The bricks containing Al,SiC, have high slaking resistance after heating, because Al,C; and AIN are not
formed in the reaction processes.

(4) It is found that Al(g), SiO(g) and Mg(g) form in the brick texture at the high temperature. The gases are
considered to disperse and condense in the pore, and then the texture is densified efficiently.
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Composition of the MgO-C brick samples

[mass¥]

No.

2 3 4 5

Fused MgO (<lmm)

80 80 80 80

Flake graphite (<0.15mm)

20 20 20 20

Al powder (<75um) ex.3 ex.3
Si powder (<45um) ex.0.8
Al4SiCy powder ex.3 ex.5.1

Phenol resin

ex.4 ex.4 ex.4 ex.4

Hexamethylenetetramine

ex.0.4 | ex.0.4 | ex.0.4 | ex.04 | ex.0.4
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Fig.2 Mass changes of the MgO-C brick samples
during heating in the reducing atmosphere.
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Fig.4 Crushing strength of the MgO-C brick samples
after heating in the reducing atmosphere.
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Fig.5 Mineral phase of the MgO-C brick samples after heating in the reducing atmosphere.
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Fig. 7 Slaking test results of the MgO-C brick samples.
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AlSIC,(s) +6CO (g)

=2A1,0;4(s) +SiC(s) +9C(s) (1)

MgO (s) + Al,05(s) = MgAlL,O4(s) 2)
LIS 2MgO (s) + ALSIC, (s) +6CO (g)

=2MgALO, (s) +SiC(s) +9C(s)  (3)

- -

T, PIAEE8IZARLAZLI7T00KIZB T,
ALSIC,BSHEIET 5 B Y € O3 O COBIE ASE B2
10 KR SN, SICAREICEET LI LR %, L
2L (D) XAHEAT L CTALSIC 255k T 5 &, COEI
1077 ~NEERL, RORISAHETST B LIk B,
8BRS O UG

SiC(s) +2C0O(g) =Si0,(s) +3C(s) (4)
2MgO (s) +Si0,(s) = Mg,SiO,(s) (5)

LRUSH © 2MgO(s) +SiC(s) +2CO(g)
=Mg,Si0,(s) +3C(s)  (6)

INODORBT & 5 ERHEALE, FHEILRZFHEIC
XhkpplR2OLHICRY, EmBn, AEENZ
PEI RIS TH D Z Db b, BRI E RRERMNE E
biz, DR, WRTEENBCOFNALDRIEDES
AREVWZEDRTWNL, (DX, @DRICLAHEED

=

Table 2 Calculated mass and volume changes of the reactions in the MgO-C brick

Equation No. Mass change /% Volume change /%

1 +91.3 +199.2

2 0 +7.8

3 +63.5 +152.0

4 +139.7 +287.9

5 0 -9.8

6 +46.4 +136.8
*Following values were used as density [x10° kg m™]

AlsSiCy(s):3.03 AL,04(s):3.99 SiC(s):3.22 Si04(s):2.33

MgAl,04(s):3.58

ALSIC4(s)+6CO(g)=2A1,05(s)+SiC(s)+9C(s)

MgO(s)+ALOs(s)= MgALO4(s)

2MgO(s)+ALSICy(s)+6CO(g)=2MgA L O4(s)+SiC(s)+9C(s)

SiC(s)+2CO(g)= SiO(s)+3C(s)
2MgO(s)+Si0a(s)= Mg,SiOs(s)

2MgO(s)+8iC(s)+2CO(g)= Mg:SiOy (s)+3C(s)

Mg,Si04(s):3.22 MgO(s):3.56
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Fig.9 Equilibrium partial pressures of the gases in the
Al-Si-C-O system. (P°=0.1MPa)

546

JEAZ & o TALOHHT I § 5. 2 DT & SIS 1&
ALSIC T DI THERE IR 2 2 & Bbh, ALSIC,
BT 21ZSICE RFE L IZE &b - TIT <,
ALSIC,(s) =4Al(g) +SiC+3C(s) @)
2A1(g) +3CO(g) = Al,04(s) +3C(s) (8)
EZADED DR SITANR T OMALERY & L
TALO Ml SN TH 5T, Spinel (MgAlLLOy) DHAH
MEINTWE, ZOZ RS, ERLAI(EASL
MENCTHEAET AMgON FEMI E THEHBEHLTLIT
OROIEERI L TWAHREEDEZEZONS, b
wid, ALSIC,OHFAEIC & o TCOMEA0 i £ T
TH5I LIk 5T, ALSICHFICHET 5MgOM F
POMgBELSMBFELLTREDZEZ LN S ((10)30),
B10°) 12Gibbs® E HI T b F — 20 5 K& 72MgO (s)
SHNE B Mg (g) ORI & COD I, mBE & DB

BE 7T, CONIENI0 0L xDMg(g) ERIE I,

1200CT10 ™%, 1400~1500T TIZ10 '~ 1ELTH D,
FUSIC S A 52 5L _RVICHD, R LEMg (g
Al(g) & & & HITEBMMICHH L T, COTEDFE W
A Cc (D RO & o THEAT 5 2 &S 1

Temperature /°C

2000 1800 1600 1400 1200 1000
KT T T T T 1
+2 —
0 ;
MgOfs) + Cls)

S 7
o
~~
S L _
O
o
D -4 .
o

6= -

Mg(g) + CO(g)
_8""
I 1 { 1
10f—— 6 7 3
1
1T x10* /K

Fig.10 Equilibrium partial pressures of Mg gas in the
Mg-C-O system. (P°=0.1MPa)
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(13)
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~Graphite '

after heat.ing vt for

(b)

Microstructures of the MgO-C brick sample with
Al,SIC, (No.3).

Fig.11

SIBANTIRE D ER LS T660C TRR L -2 RE
LT BNEBTALCHER L, EICRENS LAY 2
ENERDIARAIDALC, DB & B - THEH L, £ DRI
AR RZERABREING Z LML TwaY, Lo
R E LR EZBABELrSEIFE LR, 20
RPERBAIDRED—DLEZONTVWE, Thilt
~RTCALSIC &R L 72Mg0 ~ClLAZ%E, BITTIZRL
72X I ICALSIC TS & db o 72T BB EE L S
ZEH %L, RUSERDICL 2RILOFEEHE L HIET
HHIEDL, MBROBBAMEN LY KRENEEZ 5,
5 F&H
R F A KW ALSIC, % N L 72 B O VR & 258)
IZ2WT, MgO-ChADPERRE L THRET 1TV, L
To#ERE &
(1) ALSICEZERML 72Mg0 -~ CItAA%Z, 1000T
L) BIEMTEE & RRBRREIREAICHERL, |
FLEDTRE LR/ & & HITEBTHDT 5,



—EBEAEAEILES 2y 7 AEHTHREME T - SRR S E (2008-2014)

it ¥ 60 (10 (2008)

M <Spinel (MgAlL,0,), SICZAWT %, SiCld
1200C & 0 BiRTCOA A & & L TForsterite
(Mg,Si0,) AT 5o TN OHDOFUGITER & AF
OWIMEED UG TH 1, MOBELE 57,

(5) BSiE, ALSICp HERT 5 Al(g) %, SIChH4E
%35SI0 (g), MgO B AR T 5 Mg (g) A%, #lik
A PE BB L CHEITT A LS E R b b, Bt
Mo e br FREE L CRALETRIE L, iz 2=
BLBELT 5,

Sk

1) K. Inoue, S. Mori, A. Yamaguchi : J. Ceram. Soc.
Japan, 111 [2] 126-132 (2003).

2) K. Inoue, S.Mori, A. Yamaguchi : J. Ceram. Soc.
Japan, 111 [5] 348-351 (2003).

3) O. Yamamoto, Z. Nakagawa, T. Sasamoto : J.
Ceram. Soc. Japan, 112, S1506-S1508 (2004).

4) Wills Roger, Goodrich Steve : Ceram. Eng. Sci.
Proc, 26 [3] 181-188 (2005).

5) Wen G. w., Huang X. x.: J. Eur. Ceram. Soc., 26 [7]
1281-1286 (2006).

(b) after heating at 1500C for 3 hours ~ ©) H. Yokokawa, M. Fujishige, S. Ujiie, M. Dokiya :

Fig.12 Microstructures of the MgO-C brick sample with Metall Trans B, 18 [2] 433-444 (1987).

aluminum (No. 2). 7) ILEBAE kY, 35 [7] 365-370 (1983).
8) S. Zhang, A. Yamaguchi : J. Ceram. Soc. Japan,
103 [3] 235-239 (1995).
(2) ALSICUIERAIE MEDOBILIEMEEZHL TV 9) “FMERBEIFET, WRYEAMHEHE (1990)

i

5o pp.24.
(3) BUGHAETAF L3\ ALCy% AINAVERE L 722 W 10) J. Yu and A. Yamaguchi : J. Ceram. Soc. Japan,
2%, NAPITBECIKIM2ET 5, 101 [4] 475-479 (1993).

(4) ALSIC ik DCOF A L S L, 1000C L 0 &

548



—MHEEARLE S 3 v 7 AEMIREIE R - FiTR RS E (2008-2014)

R

k¥ 61 (6] 290~294 (2009)

AlLSICAINIC KD 7 IV Z T A—INV Bt N DB DB IR
RIS, LIOME, RESER

Bt T Iy 7 ZBMHRAME  T705-0021

R LU i T 7 A 11406- 18

Texture Densification Effects on Alumina-Carbon Refractory by Addition of Al,SiC,

Yasuhiro Hoshiyama, Akira Yamaguchi and Junji Ommyoji

Okayama Ceramics Research Foundation, 1406-18, Nishikatakami, Bizen, Okayama 705-0021, Japan

F—D—R:ALSIC, ALOyC, WRINEHE

1 [FUsIC

RESHM N IEALDER & LTRSS S| 5k
W7 & OIEBALWIC X o TEHHEESKE BT 2720,
RSB L2 2 BT 5 2 E N EETH B,
S, HLOIEBEMER & L CALSICROBA RILWIC
DWTHIEAfTbN T 5 ™, ALSI.CRIZIFALSIC,,
ALSILCs, ALSICy ALSisCq, ALSIC, & o 72L& WA
FAET 545, FTHALSICREVERERTEETH D,
AL D2080C EB < (B1Y), BRI bBERLED,
KDERE L THEETH LD, AMETE, TIVIF-
J=FK Y (LUTFALOCE L) Eiif KW ALSIC, &R
L7234 DMk OB RIZ DV T, SICOBMEEE
Pt Lo R Wi 5 %0

2 EERAE

ALSIC, DRI, ALO,CHEAMIZE A X
TWASICE Ll L2547 o 72 ALSICMEIE, €IEA
BH# (-63um), SIWE (-45um), A=KV TIFv 7

T T T T T T T T T
C + Liquid
2200~ |
AlCs + C
215860 + Lia. 28300
’ -
Agsic; + _
@} C+ L. [/ SiC+C + Lq.
° /
~ 2100 -~
o 20852 /
E] 2080:’\/ 20720
< /
S L ) 2065° B
o
g | ALC3
3} / + Al4SiCy +
= | AeSiCy C + Liq.
2000 |~ _
<& =]
L %, 7. _
= =
! 1 ] | ] 1 { 1
19005 20 40 60 80 100
AlsCs3 . sic
SiC content / mol%
Fig.1 Phase diagram for pseudobinary Al,C;-SiC

system.

10

290

(60nm) #HEFHHBIZEA LD D% F— ) IV TI0h#E
KEAL, BohihRE s —K B30, ArFHLR
TTI1700C, 3hOBER % 1To CTER L7, BB OHE
R =V IV TIOhEE i L T20 4 mPL T O RIK
ORI & Lo T/, COBKERE S5 X< HiEE
(SPS) % Tk S & TRBEMIC L2810, Bk, M
FAx 4T - T03~08mmDALSICHLE L, ThEpIRDOM
AR L7zo |/ VICHER L 72 ALO,-CEI KWk O f
WABERT . RALWIHRMO D DL, SiCh B\ i
ALSICEZTRMU7-d DEER L 720 3k, R OEE
WERE, RMOH, 127MPaTHIERE L, 200C, 6h
DBMIEE 4T - TR L 72,

VRS L 2 ket o I EILEE, R S 2 e L,
IR XA AP & R R 2 AR L7 ITBERCIE
KEAGFWMABERIF L, A& R R ICHRR L 7Kg
T L 720 & 72 MITCHERL IR O RILE i % AKERE ATES
LoTlE L,

3 BROEKIUER

B212, ALO,CHEMED, 200CHMHMTE % FHe L L7z
BITHER I O TR LR AR, 800 CHEMIZ & 2 B K
PiE, 7x ) —WBIENSA VOB LB DTH

Table 1 Composition of Al,O05-C samples
(mass%)
No. 1 2 3
Fused alumina -1mm 85 75 75
Flake graphite -150um 15 15 15
. 0.8-0.3mm - 5 -
SiC
-45um - 5 -
ALSICs 0.8-0.3mm - - 5
-20um - - 5
Phenol resin (Novolac) ex.4 ex.4 ex.4
Hexamethylenetetramine ex0.4 | ex.04 | ex.0.4

21 AR R FAMT R B TR
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Fig.2 Mass change of Al,O5-C samples at heating.
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26, SiCiZ1200~1400C OB\ P T 0 & S ATk
FETBDIH LT, ALSIC,® I 21000T LT 2 &6 F
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FTIEDTH D

TP D REFILE LR 312K T, 800TIZHBIT A
FALFOWKRIZ, 72/ —VBIEOMSHICLE 2D DTH
5. 800CUL LoSILHENE L BA &, MAMONO.1IE
RED LA L L BITHWARLTWBEA, ALSIC,ZEmM L 7=
NoJIZE MM LT B, —T, SiCHWEM L 7No.2

12 r No.1
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I
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Temperature /°C
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Fig.3 Apparent porosity of Al,0,-C samples after
heating.
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B LIBMALTEBY, 1500CTiftho > 7o 2 &
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Fig.4 Crushing strength of Al,O5-C samples after
heating.
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Fig.5 Pore diameter of Al,O5-C samples after heating.
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Fig.6 Mineral phase change of Al,O5-C samples after heating.
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Fig. 7  Stability domains of condensed phases in Al-Si-O-
C system.
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Fig. 8 Stability domains of condensed phases in Si-O-C
system.
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DFFIAHEZ 2 Y, IRERDF A X OHEH P & T hE & 2
5. bHEAABERELTCHAEMTH S, BIE, EIFITA
YT K AN OFI & & o h 7 D IGH & TV 595,
TEIH K EHER A S 7 DRENKE L, FOHLHO
THE, BRENHELW20HF DIFEH SN TV ARV, HHE
NTWTh, HEMWICFP ST TBY, ZoMiHLERC
RA D 2 P SRR B LAAK 2 S, B
WVALOSEM Z EILT 5 2 & 2 S L0 CH#ET 2,
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FTN) 7 LD, 334chlEH] # oo B FH IR O,
W 0 H oy, HAMVEER S B X OMIBEER S DR A M T
bo WIENDALO,MgOH K LAAM THSH (K1), +
YT v EERC, BHBEEEAE2 IR,

Table 1

Ya—r9y ¥y —2TI0mm T ICHER L 2ok o i
DREEBISEL 4 BEIZHH L.k 212 4 FEON Y,
LML, BLOWBIERT. Ih o505 LAY
BIEA T THAMEE LBEILL TS, v M) vy
ATRIIZ AT RILED25%E < B ) B—F A illfk% L
TWwab, TN KIHFH TS LCHEEL 2L LE
A OB FRIZT LABRMICFI T 2 &k aH880n
LI CHROYHRTERE 2 5,

T, MUY AHSICETNIFEXA SN, MgO
FHPEEGENTWDE, INOOSE, ALOJERE L
THIAT IR E R AFF LS bnEEZ NS,
INHEDTENLT M v 7 AHG OB IR R 4
BN ECEREEZONS,

i, A BRI L 7o MBERDRHIRIE <, B $TX
TUTRELTV2720, BRI L7z BE O
R GUT ALO, BB ENLE Hoad L 7=,

Properties of castable

Bottom (center) Bottom(out side) Side Wall
Chemical composition | Al,O4 90 93 89
/ mass % MgO 6 8 7
Al;O5 grain Fused Al,O4 Sintered Al,O4 Sintered Al,O4

Bottom outside

Bottom center

Impact aria

Fig. 1 Sampling position.

final repairing
90 heats
(Total 334heats)

3" repairing
81 heats

Fig.2  Using condition.

2" repairing

73 heats

1% repairing

90 heats

5 7 MBS L WKW FER

15



—MRMEAEARLES I v 7 ARMIRBME R - HifikREEE (2008-2014)

FEUIFEEG A SRR LAAAM A 50 7V I FFH DRI

Table 2 Properties of crushed grain (out side bottom)

Reaction zone Grain Al,O3 grain Matrix
with matrix with grain
Apparent porosity / % 3.9 12.6 8.1 247
Bulk density /g - cm™ 3.44 262 3.54 2.84
Chemical SiO, 4.87 0.28 0.36 0.24
Composition | Al,O4 85.32 94.18 96.61 91.33
/ mass% Fe,04 . 0.37
CaO 2.19
MgO 5.51
Appearance ' ek
pp v ,{P&x‘..dﬂ'”
. "} ". . Lonbnl |
i A‘tt [ —‘f ey
Bottom out side EAR I T ¢
(sintered Al,O3) e &', RS
L..mg.d. 3a36 .Qx.ujm
Appearance *. | Almost same with
" | “grain with matrix”.
Bottom center
(fused Al,03)

3:2 Y hUvIREBRDIRE
3-2-1 #&iRw MIKRDULE

Ya—77v ¥y —I2TI0mmI T ISHM L 1 mmELT
Ehy b LB A RREERE L, BERRE 2 SR
LRy PEflioT, REBTHELXSZ A0~ MY v
I ARG OEERAL (BFEEER . B3, 4ITHHY

o

Amount of under Tmm/mass%

30 40
Stamping time /min

Fig.3 Stamping by Iron pot (center).

Amount of under Tmm/mass%

20

Stamping time/min

30

Fig.4 Stamping by lIron pot (out side).
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i, BENFBORB L UM L HERETRT, MR L D
M UEm Z5R L, 605D M2 TH20mass% ® 1 mmbEl
TOMBAFE Lz, SOICMIFHEIERT 2 &, B
DOWRDSFHEINDE 20, BT LARM ORERK R &
5 1 mmBLF OFAER20mass%x HHEOE%RE Lz,

ZEAE L7y oL 2 R 3 I27R 37, 3R 2 DILEEMAL
LHIEARMgO#% 8 ~10mass% &% EATEY, < )y
I AEEDERIIBHEENT VB Z LD h b, TR
VTR X ) RO AAEI, ARER ORI 2o T
wa (E5),
3:2:2 RAYVTIZIVICKDINE

PRy FTHZEETAIEICIY, BMERICHELT
WABT M)y 7 ABGSOREVIHERTE 0T, kR
DAY Y TINVITEYHE, BRRET A M 2fTo/k. ©
BIZAY T INOIRERT BT ICHBRERETRT.
#Ry FTOREBE RFROKREIELNTZA, 20mass%
D1 mmPTFAFAET 5D ET DR MIEH305 & 88 v
FORESTH o7z, Tz, —BIZANIERHERTLE
HRCLETHY, BULBEAERDH S,
3:2:-3 BREEGVIT—F—ZFY-TOUE

Mroes hREBLR B HHBEL LT, BREERT V7 —4—
EEHOIFF—ICCRABOME T X b &1To 72, EBUCH
WY R - DOBRELEGERAITRTA, BHM OB
FBERLT VT — 7 —EIRERE IR ETE 2REHEL L
7o

FOERE BRI, KHEICHEET S ImmUTOERZ
A L7, R8I EDORRERT, Bllldlfio—5 — I %
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Table 3  Chemical composition of the powder consisting of grains less than 1 mm / mass%

S|02 A|203 F9203 CaO MgO
Bottom out side 1.26 85.63 1.83 2.92 7.82
Bottom center 1.68 81.19 3.93 2.60 9.82

Fig.6 Stamp mill.

Amount of under Tmm/mass%

10 20 30 40

Stamping time /min

50

Fig. 7 Stamping result by stamp mill.

Table 4 Mixer condition

BLE D H
3-3 RIDEBODRE

Test 1 Test 2
Rotary direction of agitator Cross to pan rotation Counter to pan rotation
Rotary speed of agitator 480 rpm, 4.6m-s
Rotary speed of pan 33 rpm, 0.5m-s""
Charge weight 2000g
Operating time 5, 10 min 10, 15 min
B+ —TI310~15% T20mass% L E O A SEE L 1o & 30 -'I cross ‘_i : :
HRIKEE, £ORS ¥ TRBEHELSPT MY v 2 5.2 N~ —m
. N S e . < o 5 220 : -
ADRBENL L )IER T ON B, WHHEIIA S VT 28 ” !/ /\
°E&5
§ Eo ' |ﬁcounter |
g~
< 5
MFLA &~ BB OWITI, SUSIEE R & ALO,H 0 - '

ok, SOCHBERILISRINENTVEAT A=V 774
NW=DRELTVDH, ZOHHbALOHER & ZDMLE
T HOI, BRENEEEZHE L (B9), i
MM 7% EDORYERE L LI b Tn 57T

337

10
Operating time/min

15

Fig. 8 High speed agitator mixer treatment.

17



—MEEAEARLEZ I v 7 ARIMRRME MR - Bl R#REE (2008-2014)

PR rE il BT LAAM 2507V I FFH O EIX

Fig.9 Color sorter equipment.g)

VhayR7—ExENTEZRZCCDA AT THRIL
ik 27/ ANV TIRERIETHETH S, 10~ Imm
ORIENRETIE, KE VKON S WEIATBEN S 723038
WEEARTDTH o725, 10— 4, 4 - 1 mmlIEEIRZ
PCTBIETHERCENTE A EANH o7,

B0tk Rl R DR AME. (BESVEER), R 6 I125ER
BTV I FEMOILFEME B L R E R,

B S 7z AL ORLIE B & FHE R D BERE ALOJKL DB &,
Al,O; 95mass%, MgO 3 ~ 4 mass%. & I &l
ALOAEDH4 ALO, 93mass%, MgO 4 ~ 5 mass% D
WCho7ze MgODRRE 0, RMALHIR & JER§

White grain(Al,O3) Colored grain

10-4
mm

41
mm

Fig.10 Grain appearance after color-sorting.

HIEIZED, MY v s AEHSOBRENE HITER,
MgOfizd )L LKk kS L £ Z b5, —HEEC
BHOBERLETT2-0MOERE VERTLETFEEN

b, BRLE, BRSO T, BEEALODH AV MY

v 7 ZAEBOBEERITE V. I IR REIRE AR ALO,

DFHHE O THAILHLEEZ NS, XREPTTHAEDH

BERAMgOZAE A NMLLTE D 7 ) —DMgOL LTIk

AETFEL RV EAERTE 2,
4 EURALOSBM DFEHE
SHEERZITo THINS NZALOBHM 04 L L T,

UTDOZENEZB,

D<)y 7 2ABFERYBFEVTVEOT, T+t
AV MRFRMOB DB v, FIRILEBEL 2
2 TWnh,

@ AT 7RIGBAWY BWTWBDT, Cal, SiO,,
Fe,05% ED AT 71D L%\

@ KIRIE, AASINALRE H O 72K R 2 TWw b,

5 BHMEINIOEABLUHEFD
PLEOERERE I, FHER LARM 25 ALOE

MEEINT 57t 2 2BINIRY,
SEOEBHERE TR, KOO 1 mmfisd TEICTH

10mass%® 1 mmB T A%4, @R 5 ¥ TRBTREICTH

20mass% ® 1 mmBA T 25584, Q&N TR TERN

AHI30mass%FET B2 L a5, MMM OB %100& L

TALOEH OB £ ) 13#950% £ E 2 6N b,

REFTOE LA ;

CHUR AR RE90%) X (A & ¥ TR 80%)
x (o J A 70%) =50%

6 F&H
HERERIE A, GG, BT AVF—0ugrs, HH

BRI LIARM B DOALOLEHM %, Wk B 72T FEIIE W

THEILL, FHEALOJFE L L THMTE 2 WAME L7

SN E AR AT L, M2 S 2 o RN %

FTHIELY, WRMDO< ) v o ZES (MEBERS)

FMY B Z ek Ahl, SHCBBRINCEIY, R57

G EDRE LG L2 L, BV ALOSKL D 531 % A,

D) OWEETHETESL L 2R L,

Table 5 Properties of the white grain that classified by coloration state

Sample Grain Chemical composition / mass% Physical properties

size

Si0, AL,0, Fe,0, Ca0 MgO AP /% B.D. /g« cm™

Bottom 10-4mm | <0.01 | 95.29 | 0.45 0.51 3.12 8.5 3.46
(out side) 4-1mm | €0.01 | 94.16 | 0.32 | 0.93 | 4.32 - -
Bottom 10-4mm | 0.39 93. 43 0.32 0.99 4.11 14.0 3.25
(center) 4-2mm | 0.53 | 92.91 | 0.39 | 1.23 | 4.39 - -

2-1mm 0. 84 92.50 0.32 1. 54 4. 64 - -
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Dbrake out | @removing | @crushing by | @sieving 1mm

Ladle lining lump of iron jaw-crusher(-10mm) (10-1,-1mm)
and slag

®stamping | ®sieving (Dcolor sorting

10-1mm grain (10-5,5-3,3-1mm)

®AI,0; grain

Fig. 11 Recovering prosess of Al,O5 clinker.

AL & 72 AL, O I IE MgO ML 5 2 8mass % 7% - T ik
DA, ALO,%93~%mass% & A L, BANIULKA ST 1) B @ iAW, 55 [10] 474-475 (2003).

FRTH Y, KA ALOJERE LTRIHTE 5, 2) A2 RAWE, HILEBE, MM 3% mkY, 56 [9]
COFEE, WHI X b ORNEIZER S DY, BT AL F—, 453-458 (2004).
BERCBEBTELDEDDHETH B, 3) BEVER/ERTHP. (2007.11).
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REHICHTBALSIC,OSERN
EINFEE, IWOWR, RBYISFER
it 3y 7 ABMREME  T705-0021 [ LIBAHETTTPE Fr 1406-18
High-temperature Reaction of Al,SiC, in the Carbon

Yasuhiro Hoshiyama, Akira Yamaguchi and Junji Ommyoji

Okayama Ceramics Research Foundation 1406-18, Nishikatakami, Bizen-shi, Okayama 705-0021, Japan

Abstract : The ALSiC,-C samples heated in carbon powder were studied, in order to clarify a high temperature
reaction mechanism of AlSiC, added to carbon containing refractories. Al,SiC, reacted with CO gas to form mainly o-
ALO; and SiC above 1000C. This reaction proceeded at lower temperature as the grain size of AlSIC, decreased.
Al,Cs did not form at any grain size and heating temperature. A reaction layer of around 15 um thickness was formed
at the surface of Al,SiC, grains at 1500C for 5 hours. This indicated that the reaction occurred from the surface
toward the inside of Al,SiC, grain. The thickness of the reaction layer was constant at any Al,SIC, grain size. As a
result, the reaction was accelerated as the AlSIC, grain size decreased, because the small grain had a large surface
area. The reaction layer was composed of SiC and carbon. It was estimated that aluminum vaporized from AlSiC, and
dispersed to the surrounding texture, and then Al,O; and carbon were condensed in the pore, and densification of the
texture occurred.

Key Words : Carbon containing refractories, Al,SiC,, Reaction mechanism, Reaction layer, Evaporation-

condensation

B B RIEBWAYPIHEMSNIZALSIC,OBERT TORISHERZ W 52123572018, ALSIC,-CRIEARE
B RFER K TR L TRAE L7z, ALSICZ1000C UL ETCOH R E S L, EiCa-AlO;ESICEER Lz, Z DRUSIE
ALSIC,DREEAVNE K 7% BT LRI SHET Lz, WTNOKE, REICBVTD, ALCOAERITRD bNEh o7,
1500C, 3hOBERZATo 788, ALSICHOREIZIE L15 umD FUSBATER S, FUSIZERE A 5 R & #4T L7,
FUSEDEHMTALSICOMZEILL ST —ETH Y, HEIWNSWIEERERCEL L HICRZ 5013, REAFHIKE
WZEIZX B, RIBBIEEISICHCHA B2 Y, AR DA &5 - EL T, EMATALO;+CE LTEHREL,
kxR LT 5 L HEE SN,

F—O—R . REFEFEWAKY, ALSIC, BUSHME, BUCHE, IR
| MgO-CEIi k¥ & % 1 AlL,O5-CHEI AW AlSIC, % TN

REGHMWKWIRZEOBACK L RLHMEHE AL HMEL T5&, BIRTCRIESKIEMETL, ZoOBEIIE
THRMEINBEBR KA 2 EOIEFALIIT X » T BERAIRSICERMLASGE L) dRELREIEND
RELSENT B0, AR U TRERIFRILY = Do TVBE W KBIETIE, IhbRESATYHIC
BT 2 ZENEETH B, BE, ALSICROBEARIL B HALSIC,OBRT TORISHELZH ST 541
WICHT AW TONTBY, FRILWROFHMEL  BRE LT, ALSIC & B E 2 AR DbEALSIC,CH
LTHEHENRTWS Y, ALSICRIZIZALSIC,, ALSLCs,  ABAFERL, DBk o S & MoV CRE % 47
ALSI,Cr ALSIsCq, ALSIC,DMBE BT 2ILEWHIEE o7
TBHH, TOHRTHALSICIEVIREBRTRETH D, 2 REHIE
LEA2080C & bulRaym < ), WOARAIMEICEN, $BMEt 21 AlSIC,mDiEE

Bt
> Dl

LB B DI WHAE S L T4 FEaAT Y TR hDI D ALSIC R IE, £BABEK (99%,—63 um), SiH*E

ORI D 2V ICENR D 2 &, AKWERE LTHE

LEZLNTHEYY HE5 121520 TONEDS, FR204E 11 21 B A, FH214E 7 A27A S
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(98%,—45um), H—FK> 75 v 7 (60nm) ZFEE & L
THRMBICRA LD BHET VI FEOFR—L 3
VTI0hZRIRA L, Boh-BEL B0 3%, Ard
PHE T T1700C, 3hOBER 1T HE:CTIER L, BERK
BOBKREBER— VIV TIOMER B L T20 um L F
(FHK 8 um) OB E L, #EERE Lz, /4, 2
DWKREWET 7 A Persk (SPS) & H v THERS S 2t
TREB R, WL, BERHE A TREREZ TV
0.3~0.8mm (/4E) B L U045 um~0.3mm (k) o
ALSICH %18, ThERROMRERE L. 2B, B
ML CH BB R RED 3 ~15 umBEDL# BT
HY, BRXFEETCTHERR L 228K B L UL of5 R
Wb ALSIC,DBMHTH - 72,

2-2 AlSIC,CREBIDIES

FEDORL D ASICAIFREME & L THIRES
(99%, - 150 um) % MlAE b+ TALSIC,-CEDRK & L
7oo BRRESHIRFERAM AP OEL L LTELLHVLM
TWwWabZehb, KFETOIHAT LI L L L2,
ALSIC,-CERBOEANETEZRITIIRT., T2
ALSIC, DR % 0.3~08mmD Hfl, 45 um~0.3mm DA
HBHVIZ20 umBL T O & LAk %, & 4No.1, No.
2, No.3 & L7z. ALSIC,& BEIRESIZNL v —E LT
7x/ = VEEEZMZTRMOE, 9SMPaTHRIEL,
200TC - 6 hOZRALI % 17 > THLEARA & L7

23 BEOBKIUHE

VEBLL 72 ALSIC,-CHBHE %, REEFM KW OEIE
KO F RS % I L CRH R TRER L7z BERIE,
BT ITRT & S IR RIS L IRETITY, FiE
FE#%10C/min, A€M T 3 hif# L BIcg ¥+ 54
PR Lo BEINHEORBNL, Z OS2 B KX A
PFCAEL, FHEL2 W, BB L%, ALSICH
TFHRBEOFISIRE % SEMB & UEPMAZ W THEL 7,
3 @R

BI212, ALSIC-CHME % BEI K TR L 2IHD

Table1 Composition of Al,SiC,-C samples
(mass%)

No. 1 2 3

Flake graphite —150um 70 70 70

0.3-0.8mm 30 - -

Al,SiC, 45 m—0.3mm - 30 -
—20um - - 30
Phenol resin (Novolac) ex.5 ex.5 ex.5

Hexamethylenetetramine ex.0.5 | ex.0.5 | ex.0.5

Air atmosphere
Al,O, c{wer /

Electric
furnace

Al,O;
| 1" crucible

Al,SiC,-C sample Graphite powder

Fig. 1 Outline of heating test.

14
12

T

10
8 -

Mass change /%

6
4 F
2
0

600 800 1000 1200

Temperature /°C

1400 1600
Fig.2 Mass change of Al,SiC,-C samples while heating.

EREEMEERT N Uy ¥ = LTHEHLI7= /=
BIRGIRED LR & L ICBMELRI LTRILL, ER
DT BN, ZOBSREIE800C TIRIFET 5
72, FNLEORETE L 5 EEZ(LITRBNTORIE
ML DERD, L oTIZTIFS00THER % % 4
H#ELTFERLTVS, M2XY, WFhoie 1000~
1200C UL L CTEROMINTRD b, EEBE ) KUs
HEHA NI THETL T B D bh b, $72, No.l
(k) X9 dNo.2 (kD) 4%, S5IZNo.2 Giltkr) &
D dNo.3 (k) Ol KRELEEWEMERLTEY
ALSIC, DM ENVNE WIZEFUSHRE EF LT B,
M3~®b51i2, HHBOMMMELERT, ALSIC,D
FURARIICHE B 572012, B0 — 271380 L TER
LTH b 0.3~08mmD L ALSIC,Z MM L7zNo. 1 (K
3) i3, 1400CFTEEALEAMRSNT, 1500CTh
T2 a-AlLOs & SICOAEBATRD 5N 5.

—7%, 45 um~0.3mm® M % H\72No.2 (K4) T
1, 1200CHE D 5 a-AlOy& SICAER Liko, 1400T,
1500C L iR EA LR T 512 L7 TALSIC,OEA & &
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BIEE M REPICBI S ALSIC, OB

< 100
8 L
E 80 ‘—\.\H\'
x L
s
> 60 r _e— ALSIC,
g i —0O— Al,03
40 -
g —aA— SiC
° | —o— AION
g 2 t
B i
£ S a——a—at
600 800 1000 1200 1400 1600

Temperature /°C

|
Q

.3 Mineral phase change of No. 1 Al,SiC,-C sample
after heating.

< 100
(0]
9 I
2 80
> L
Y
° 60 [ —@ ALSIC,
£ L —0— ALO,
§ 40  —a— SiC
£ - —o— AION
2 20 r
&

600 800 1000 1200 1400 1600

Temperature /°C

Fig.4 Mineral phase change of No.2 Al,SiC,-C sample
after heating.

HiZa-ALO,, SICHHWRL TS, Fiz, DT Hhids
AION (AlOsN;) dAER LT3,

20 umBLF O O ALSIC, 2 L72No. 3 (B5) T
i, L DEIRD1000T 2 5 a-AlL0, L SICAAERK LIGD,
TORGEEEAE & HITHFIHERL TS, ZUTHE
> TALSICHEBEIHA L THB Y, 1500C TI3ITIFHE
LTwd, /2, HT2IZAION (AlGO;N,) DA AT
HHN5,

INHDRRD S, REFOALSICHIRITHERIZ L o
TRIBZRI L, FICa-AlLO;LSICHERT 5 &4h
DB TIXDORIEDETEESVIZHEICL > TREY,
MAEM/NSVIT SRR SH#TTHZ EDBRE NS,
BB, WTRORE, REICBLTYS, ALC,OEKIZE
HHNW,

B6, ®7iZ, No.1B&UNo. 2 il 0@ITHERR 5 DO
& (UIBTE DL BEMBEE) 2R ¥ BEAOKER L,
BITHERL L7z ALSIC,-CEMEHNZEZT TR F VHfE %
B S, WAL & 705 HUR O W % BRI LT 1R

22

100

80 r

60 | —e— AlsSiC,

T —0o— ALO,
40 r .
i —&— SiC

—o— AION
20 r

Relative intensity of XRD peak

0
600 800 1000 1200 1400

Temperature /°C

1600

Fig.5 Mineral phase change of No. 3 Al,SiC,-C sample
after heating.

£ 50pm

1400°C-3h ~ 1500°C-3h

Fig.6 Microstructure of No. 1 Al,SiC,-C sample after
heating.

1500°C-3h

Fig.7  Microstructure of No.2 Al,SiC,-C sample after
heating.
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%50, No.1, No.2 & diZ, 1000CH & 1°1200C Tl
ALSICRIZZEALIZIZ L AR 51 F, 1400TIZB VT
ALSIC R OEFIIIGE S L &R WEANE TR ABO T
Who 1500C TR RO KUCBIREAZBELTEY, W
M@ EN D, ALSICHONBIITIORETLZE
LLTBLTHEE MM EMRELCBY, IS o&R
M HNIBIZI Do THEE 2 E 2R LTV 5, 1500CIZHT
5 BUSIE DJE A1310~20 um B BE THHITIC & & 913134 —
Tdhbh, No.1&No.2 L DENZHEERD SNV, o
T, B2 ~BIRLARFEDENI LD KCEDEE, H
FUCHOREE T b b UNHHOEIZLEEE 25, L
LofERDP S, RFEPITBIF B ALSIC, 0 BUS L0 KA
ORI A - THA, H—REHROSIGEE KL %
VoHETTEIENHL L E RS,

KT, JeFEMEBISIZ AV 72 No. 2 B OB 01
— W Z oW CEF MBI B X O H S A Ol % 17
5720 MREEBIIRT, SEMBIBEH QMY % %3
ZREFHERL TS, ALSIC I CBEsh, ¥
WTHHI bbb, —J, KEMOGEIEINS R
ATBY, BMRMMYAYEFEETE L, Thbbiiliaf
FAOMBEIN TSI LA SNS, TEOHA% /L
B &, BUSEHTIEALSIC ALK L TAID A % <,
SIDNAE L TV AT RO 5N BH, Ch ALSIC R NE X
DNELHIHLTVBEINIZRZ B,

B9 RSB #2 Jik LTI L 2Ry JUS
Bt 1 umP T OMMMAEHE T2 5% ->THEY, »k )
GHMEELTW5, HILRE & ALSICH & OB H i)
WTE R CMML2H ), HlEe LR ONTEEL T b,

Al,;SiC, grain
A

Reaction layer Flake-graphite

4 N

SEI

Fig.9 SEM image of No.2 Al,SiC,-C sample after
heating at 1500°C.

FRICE L WIREH OB L EELTVDLHICR
Zho OB AILHRSMEKINIRT, KIGEH
2B B AW ESIOMRPARICRO oL, F72C
DA E LB L, ALSICHNERL Y B RISBHO A%
KHMMLTWBI &b, K8 LFEBEOMHNERLT
Wk, BAIRLAE I, RISOH#TE & HIZSICHY
RKLTwaZern, FHIGEFIZEZHMT AHSiECE
SICELTHFALTWA LTSNS,

AMOGAx LK RBE, FISEERBME L ORMmICE
THLHFHETHREIANRSN L, MUBEINICIZ0OLE LS
HLTVD, F7, BUISED A LN Bk T o RMIC
DAL K FAETAHEFNH Y, FRICONELHHLT
WBEIZLRAE, ITNSOSMIRIESE X ) HFEIRY

A5

SEM image

(secondary-electron image)

O]

Fig.8 EPMA images of No. 2 Al,SiC,-C sample after heating at 1500C.
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TR T
SEM image
(secondary-electron image)

0

Fig.10
AlSiC, grain  Reaction layer Flake-graphite
A A

Fig.11

EPMA line analysis of No.?2
Al,SiC,-C sample after heating at
1500C.

7212, W—HEPTIZ DV TR & 5 TosR 54l i E 2 47
272 FREEINIRYT . JUSEORMICAIE OV ILFL
TWAEMPRONE L EHIT, BHLBEMHOMIZDAI
EOLEDPHEFEL T L EHBPHEICROONE (KL
Ao COZ &, BB TANRSABUSERE A~
B, »H2VIERISEISHEN-EHOME TRIIL T,
ALOR B L TWAB Z L #RIBL TV A,
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EPMA images of No. 2 Al,SiC,-C sample after heating at 1500°C.
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Reaction mechanism for the synthesis of TisAIC, through an
intermediate carbide of Ti3AIC from elemental Ti, Al, and

C powder mixture

Michiyuki YOSHIDA,' Yasuhiro HOSHIYAMA, Junji OMMYOJI and Akira YAMAGUCHI

Okayama Ceramics Research Foundation, 1406-18, Nishikatakami, Bizen-shi, Okayama, 705-0021

A layered ternary carbide Ti;AlC, was synthesized by pressureless calcining process from the mixture of titanium, aluminum and
graphite powders. Almost single-phase TizAlC; was obtained after calcining at 1400°C for 4 h. The microstructural evolution
during the formation of Ti3AlC; was examined at the temperature from 900°C to 1400°C. Ti3AlC, was formed through an inter-
mediate carbide of TizAIC, which was seldom reported in previous literatures. Based on the results of X-ray diffraction (XRD) and
energy-dispersive X-ray spectroscopy (EDS), a possible reaction mechanism was proposed to explain the formation of Ti;AlC,.

©2010 The Ceramic Society of Japan. Allrights reserved.

Key-words : TisAIC,, Layered carbide, Microstructure, Reaction mechanism

1. Introduction

Titanium aluminum carbide (TizAlC,) is one of the three ternary
compounds existing in Ti-Al-C system. TizAlC, has attracted
increasing attention owing to their unique combinative properties
of both ceramics and metals.”"® Like metals it is thermally and
electrically conductive. easy to be machined with conventional
tools and resistant to thermal shock. Like ceramics it is light
weight, elastically stiff and thermal stability, and retains its
strength to high temperature. Especially, TizAlC, exhibits some
room-temperature compressive plasticity.” Due to such unusual
combination of properties, Ti3AlC: are considered potentially
attractive materials for various functional and structural applica-
tions. However, TizAlC; is very difficult to synthesize because of
its very narrow phase range in Ti-Al-C ternary phase diagram.*”’

Since Pietzka and Schuster® first reported the synthesis of
TizAIC; by sintering cold-compacted powder mixtures of Ti,
TiAl, Al4Cs, and C at 1300°C in Hz (g) for 20 h, various starting
materials and processes have been attempted to synthesize
Ti AIC.. V019 Ti; AIC, exists in complex ternary systems in
which several quite stable binary and other ternary phases coex-
ist. For example, the phases TiC, AlTi, AlTi, AlTi, AlTis,
TizAIC, Ti,AIC and Ti;AlC; may all be found on the phase dia-
eram.” Depending on the chosen raw materials and processes,
some of these phases are formed as transient intermediates dur-
ing the synthesis of Ti;AlC.. Ge et al.'” fabricated Ti;AIC: by
combustion synthesis from the elemental Ti, Al and C powder
mixtures. The ternary carbide of Ti3AlC: with the small amount
of impurity phase of TiC was obtained in very short reaction
time. In their study, the intermediate phases of TiC and Ti.AIC
were observed. Zou et al.'¥ reported the fabrication of TizAIC:
with spark plasma sintering (SPS) from the mixture of Ti, Al and
TiC. The fully dense and almost single-phase TizAIC; was

Corresponding author: M. Yoshida; E-mail: myoshida@gifu-u.ac.jp
Present address: Department of Materials Science and Technology.
Faculty of Engineering Gifu University, 1-1 Yanagido,Gifu City.
501-1193
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obtained at 1300°C for 15 min. They found the intermediate
phases of TiAl, Ti3Al and Ti>AIC during the spark plasma sin-
tering. Han et al.'> also fabricated fully dense and pure Ti;AIC,
by hot pressing from TiC, (x = 0.6) and Al powder mixture at
the temperature of 1250°C for 4 h. Only Ti,AIC was observed
as the intermediate compound during the synthesis of TizAlC..
The maximum flexural strength (900 MPa) of their Ti;AlC: was
significantly higher than that reported in literature (300450 MPa).
Yang et al.'® synthesized Ti;AlC: by mechanical alloying (MA)
and spark plasma sintering (SPS) from elemental powder mix-
ture of Ti, Al and C. They successfully obtained dense and pure
TisAIC; at lower sintering temperature of 1050°C. In their pro-
cess, the observed intermediate compound was only TiC. In these
previous literatures, TiC and/or Ti>AIC have been observed as
intermediate carbides during the synthesis of TizAlCx.

In the present study, the mixture of elemental Ti, Al and
graphite was chosen as starting materials. An intermediate
carbide of TizAIC, which was seldom reported in previous liter-
atures, was observed during the formation of Ti;AlC.. Under-
standing the roll of intermediate compounds during the synthesis
of Ti3AlIC; is important for its microstructural design (grain size
and morphology) and synthesis of high purity Ti3AlCa. The
objective of present study is to elucidate reaction mechanism of
TizAlC; through an intermediate carbide of Ti3AlIC by examining
the microstructural evolution.

2. Experimental procedure

Ti (< 40 gm powder size, 99% purity, Mitsuwa Chemicals Co.,
Ltd.), Al (< 40 um powder size, 99% purity, Mitsuwa Chemicals
Co., Ltd.) and graphite powders (< 5 gm powder size, 99%
purity, Kojundo Chemical Laboratory Co., Ltd.) were used as
starting materials in this study. The starting materials, with stoi-
chiometric molar ratio of 3Ti/Al/2C, were mixed in ethanol by
mechanical stirring for 1 h. After drying, cylindrical compacts:
@15 mm x 5 mm were prepared under the pressure of 20 MPa. fol-
lowed by cold-isostatically pressing (CIP) at 100 MPa. Calcining
was carried out in a graphite furnace under Ar-atmosphere
(Model FVPHP-R-5, Fujidenpa Kogyo Co., Ltd.). The heating
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of Ti;AIC from elemental Ti, Al, and C powder mixture

rale was controlled at 10°C/min, and calcining temperature was
selected in the range of 900-1400°C and held for 0-20 h. Phase
analysis of the pulverized sample was performed by XRD
(Model RINT2200, Rigaku Co.) with Cu K, radiation at 40 kV
and 40 mA. For microstructural observation, the synthesized
bodies were incorporated into epoxy resin and mechanically pol-
ished (1 #4m diamond finish). The microstructure of the carbon
coated samples was observed with scanning electron microscope
(Model JSM6490, JEOL Ltd.). and energy-dispersive X-ray
spectroscopy (Model Genesis2000, EDAX., USA).

3. Results and discussion

3.1 XRD results of the calcined samples

Figure 1 shows the XRD patterns of samples heated at 1200~
1400°C for 4 h. When the sample was heated at 1200°C for 4 h,
the peaks of unreacted graphite, TiC, TisAIC and Ti,AIC were
detected. With increasing temperature, the relative intensities of
Ti;AlIC and graphite decreased. When the sample was heated at
1300°C, the peaks correspond to TizAlC, appeared. When the
sample was heated at 1400°C, two phases of Ti3AIC: and TiC
coexisted, and the peaks of Ti»AIC, TizAIC and graphite disap-
peared.

In order to understand the effect of soaking time on the frac-
tion of the constituent phases at 1400°C, the sample was heated
at various soaking times (I, 4, 10 and 20 h). The constituent
phases in the sample heated at 1400°C were TizAlC,, Ti»AIC and
TiC. The relative intensities of these phases changed depending
on the soaking time. After removing background and stripping
K, the contents of the constituent phases of Ti;AlC,, Ti,AIC
and TiC in the sample at 1400°C can be quantitatively estimated
from the integrated XRD peak intensities according to the fol-

lowing equation:'”
W, = & M
(Ia +0.2201, +0.0841. )
W = o @
(4—.5451;l + 1y +().3821¢)
W = L 3

(11.9051, +2.6191, +1..)

Where, W,, W, and W, are the mass fraction of Ti;AlC,, Ti,AIC
and TiC, respectively; I,, /s and /. are the integrated diffraction
intensities of the TizAlC2(002) peak, Ti,AlC(002) peak and
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Fig. 1. XRD patterns of the Ti/AlI/C powder mixture heated to 1200-
1400°C for 4 h.
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TiC(111) peak, respectively. Figure 2 shows the contents of
TizAlCz, Ti2AIC and TiC in the sample heated for different soak-
ing time. The content of TiAIC was 8.8% in the sample heated
at 1400°C for | h, and decreased to nearly O with increasing the
soaking time. The content of TiC was 7.0% in the sample heated
at 1400°C for 1 h, and decreased to 3.9% with increasing the
soaking time to 4 h. With further increasing the soaking time, the
content of TiC was almost the same value as that at 4 h. The
maximum value (96%) for the content of TizAlC> was obtained

100
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Fig. 2. Dependence of TizAIC,, Ti>AIC and TiC contents on soaking
time.
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Fig. 3. XRD patterns of the Ti/Al/C powder mixture heated to 900-
1400°C for O min.
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after heating at 1400°C for 4 h. With further increasing the soak-
ing time, the content of TizAlC; slightly decreased. Even after
calcining for 20 h, single phase of TizAIC, was not obtained.
This was attributed to the vaporization of Al during the heating.

3.2 Microstructural evolution during the formation

of TizAIC;

Figure 3 shows a series of results of XRD patterns for samples
heated to, and then cooled down (furnace cooling) from different
temperatures. When the sample was heated to 900°C, peaks cor-
respond to intermetallic compounds of AlTiz and AITi were
detected. With increasing temperature to 1000°C, the relative
intensity of AlTiz increased , while the relative intensities of AITi
and graphite decreased. The peaks of TizAIC and TiC appeared
in the sample heated at 1000°C. With further increasing the tem-
perature to 1100°C, the relative intensities of TizAIC and TiC

increased, and the peaks of AlTi disappeared. The main peak of

Ti>AIC at about 26= 40° appeared at the temperature of 1100°C.
With further increasing temperature to 1300°C, the relative inten-

BEI EDS dot maps (Ti)

o o

Fig. 4. Back-scatter electron images (BEI) of Ti/Al/C powder mixture heated to 900-1400°C for 0 min; EDS dot maps for elemental Ti and Al
taken at the same location as BEI.
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sities of TiAlIC, Ti3AIC and TiC increased, while the relative
intensity of AlTiz decreased. When the temperature was
increased to 1400°C, the relative intensities of TizAlC and graph-
ite decreased remarkably. TizAIC: was not observed in the sam-
ple even after the calcining at 1400°C for O min. The number of
constituent phases in the immediately cooled samples (Fig. 3)
was more than that observed in the sample heated at 1200-
1400°C for 4 h (Fig. 1) This indicates that the immediately
cooled samples did not reach equilibrium state at calcining tem-
peratures.

Figure 4 shows back-scatter electron image (BEI) of the sam-
ples heated to, and then cooled down from 900, 1200, 1300 and
1400°C, respectively. EDS dot maps for elemental Ti and Al
taken at the same location as BEI are also shown in Fig. 4. The
microstructure of sample heated to 900°C consisted of grains
with diameter of about 50 #m. The dark phase in BEI was unre-
acted graphite and incorporated epoxy resin. A distribution of
graphite in the microstructure was not clear from the result of
EDS dot map for elemental C, because elemental C was also

EDS dot maps (Al)

39



—MRBEEARLE T I v 7 AEHRBEME R - HTRREEE (2008-2014)

Yoshida et al.: Reaction mechanism for the synthesis of TisAIC, through an intermediate carbide

JCS-Japan

of Ti3AIC from elemental Ti, Al, and C powder mixture

detected from the incorporated epoxy resin. In BEI of the sample
heated to 1200°C, fine grains were observed around coarse
grains (d = 50 #m). As the temperature was increased o 1300°C,
larger grains were enwrapped or linked by fine grains. The struc-
ture of the product was loose and not dense, even after the
calcining at the temperature of 1400°C. EDS dot maps of the
sample heated at 900°C showed that the grains with d = 50 gm
consisted of the inner core of titanium and the outer layer com-
prised of Al-rich intermetallic compound. According to the XRD
profile of the sample heated at 900°C (Fig. 3), the dominant

phases were AITi and AlTis. It is assumed that large amount of

Al diffused rapidly and accumulated on the surface of Ti grain,
forming Al-rich intermetallic compound (AITi or AlTiz). When
the sample was heated at 1200°C, most of the aluminum was
detected at the same points as where titanium was detected in the
intermetallic grains. This indicated that the diffusion of Al from

the outer layer to the inner core occurred and the composition of

these grains became single phase AlTis. In the sample heated at
1300°C, Ti was also observed around the intermetallic grains,
while Al localized in the intermetallic grains. When the temper-
ature was increased to 1400°C, Al was also observed around the
intermetallic grains.

Figure 5 shows higher magnification photograph of the inter-
metallic grain in the sample heated at 1300°C. EDS dot maps for
Ti and Al are also shown in Fig. 5. It was found that grains with
the diameter of about 5 gm were formed on the surface of the
intermetallic grain. Finer grains with the diameter of about 1 gzm,
which linked together, were observed around the intermetallic
grain. Considering the results of EDS dot maps, the grain marked
with A, which formed on the surface of the intermetallic grain,
was correspond to Ti;AlIC or Ti:AIC, and the fine grain marked
with B was TiC. At the temperature of 1300°C, the intermetallic
grain was covered with ternary carbide grains (TiAIC or
Ti>AIC), and fine grains of TiC were formed outside ternary car-
bide grains. According to the XRD results at 1200-1300°C. the
relative intensities of Ti:AIC and graphite decreased with
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4
he,
(©)
Fig. 5. SEM photographs of Ti/AlI/C powder mixture heated at

1300°C: (a) Secondary electron image; (b) EDS dot map of Ti: (¢) EDS
dot map of Al
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increasing the duration time from 0 min (Fig. 3) to 4 h (Fig. 1),
while the relative intensities of Ti:AIC and TiC increased with
increasing the duration. These results indicated that Ti;AlC was
the intermediate compound during the formation of Ti>AIC and
TiC in the reaction between the intermetallic compound and
graphite.

In this study. TizAlIC: was not formed through the direct reac-
tion between the intermetallic compound and graphite. Pietzka
and Schuster™ reported that the stable carbides for the stoichio-
metric molar ratio of Ti:Al:C = 3:1:2 were Ti,AIC and TiC in the
isothermal cross-scction (1000°C) of the Ti-Al-C ternary phase
diagram. It is assumed that Ti,AIC and TiC are intermediate
compounds during the formation of Ti;AlC.. Barsoum' has
revealed the strong relationship among the unit cells of TizAlICa,
Ti>AIC and TiC. In TizAIC,, aluminum close-packed planes sep-
arate two layers of edge-shared TisC octahedral, while in Ti,AlC
they separate one layer of edge-shared TisC octahedra. If none
of these aluminum planes exist. the edge-shared TisC octahedral
link together directly to form TiC. Due to this strong relationship
among the unit cells of TizAlC,, Ti>AIC and TiC, Kisi et al."”
suggested that direct conversion of Ti>AIC and TiC to Ti;AlIC,
could occur without formation of intermediate phases. Accord-
ing to our XRD results at 1400°C, the relative intensity of Ti-AIC
and TiC decreased with increasing the duration time from 0 min
(Fig. 3) to 4 h (Fig. 1), while the relative intensity of TizAIC>
increased with increasing the duration. These results indicated
that TizAIC; was formed through the reaction between Ti>AlIC
and TiC at the temperature of 1400°C.

3.3 Reaction mechanism in the formation of
TizAIC,

Figure 6 shows a possible reaction mechanism during the for-
mation of Ti;AlCa. Above the melting point of aluminum
(660°C), a large amount of Al diffuse rapidly and accumulate on
the surface of Ti grain, forming Al-rich intermetallic compound
(at 900°C). The diffusion of Al from the outer layer of Al-rich
intermetallic compound to the inner core of Ti occurs and the
composition of intermetallic grains becomes single phase AlTis,
which is the same Ti:Al ratio of the starting mixture (1100°C).
Eustathopoulos et al.*” reported that the contact angle between
liquid aluminum and graphite was > 100° when the temperature
was < 950°C, but decreased rapidly to 60° and smaller as the
temperature was increased to > 1050°C. The EDS dot maps at
900°C shown in Fig. 4 also indicate that liquid aluminum wets
the titanium better than graphite. At this stage, titanium-aluminum
compounds were formed at the interface between the aluminum
melt and the titanium particles. The layer of the TiAl; com-
pounds will grow until their decomposition temperatures are
attained (1387°C and 1460°C for TiAl; and TiAl, respectively).
As the temperature is increased to 1300°C, two reactions occur
in a limited region at the surface of AlTis grains. The product of
one reaction is TizAIC (AlTis + C — TizAlC), while the products
of the other reaction are TiC and TiAIC (Ti;AIC + C — TiC +
Ti-AIC). As the temperature is increased to 1400°C. Ti-AlIC
reacts with TiC to form Ti;AIC: (T AIC + TiC — Ti:AlIC,).

Ge et al.'® fabricated TizAIC: by combustion synthesis from
the elemental Ti, Al and C (carbon black) powder mixtures, and
studied the reaction mechanism of Ti;AlC,. In their study. the
reactions during the synthesis for TizAlIC2 were expressed as fol-
lows:

Ti + C = TiC (®)
Ti + Al - Ti — Al melt 9)
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Starting Powder [

—C (Graphite)

(1

compound

2) Al-rich intermetallic

AlTi;  C (Graphite)

1400°C

TisAIC,

Fig. 6. Proposed reaction mechanism during the formation of Ti3AlCa. (1) Initial mixed powder (2) Above
the melting point of aluminum (660°C), a large amount of Al atoms diffuse rapidly and accumulate on the
surface of Ti grain, forming Al-rich intermetallic compound (at 900°C). (3) The diffusion of Al from the outer
layer of Al-rich intermetallic compound to the inner core of Ti occurs and the composition of intermetallic
grains becomes single phase AlTis. (4) At 1300°C, two reactions occur in a limited region at the surface of
Ti;Al grains (D AlTi; + C — Ti;AIC, @ Ti;AIC + C = TiC + Ti,AIC). (5) At 1400°C, Ti>AIC reacts with

TiC to form Ti:AIC,.

TiC + Ti — Al melt — Ti;AIC; (10)

At first, Ti powders reacted with carbon powders to form TiC
particles. Then, the formed TiC dissolved into the Ti-Al melt,
and TizAIC; began to precipitate from the melt. The proposed
mechanism in the present study is different from that of the
previous study. Ti—Al melt was not observed in our calcined
samples. The heating rate of the combustion synthesis (about
1000°C/s) was much higher than that in this work (10°C/min).
In the Ti-Al-C system, a lower heating rate results in a thicker
TiAl, layer on Ti particle. A thicker TiAl, layer inhibits the dis-
solution of titanium into the aluminum melt.*" In our samples
heated with 10°C/min, almost all Al melt reacted with Ti to form
intermetallic compound, and no Ti-Al melt was observed. This
indicated that the reaction route during the synthesis of Ti;AlC,
is affected by heating rate.

Peng et al.'” reported that the thermal explosive reaction
between titanium and carbon was very easy to happen, and the
crucibles with the elemental powders often broke into several
pieces during the synthesis of TizAIC; from the elemental Ti, Al
and C (carbon black) powder mixture. They detected the exother-
mal reaction between carbon black and Ti powder at 650°C (Ti +
C — TiC) by differential thermal analysis (DTA). On the other
hand, our results of XRD profile in the sample heated at 900°C
showed no TiC peaks. This indicated that no exothermal reaction
between Ti and C occurred below the temperature of 900°C in
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our study. There is a difference in the starting mixtures between
Peng and this work. In the present study, the graphite powder was
used instead of carbon black as a starting material. Generally, the
reactivity of carbon black is better than that of graphite. It was
suggested that the reactivity of C source also affected the reac-
tion route during the synthesis of Ti;AlC..

In the present study, we proposed a possible reaction mecha-
nism for the formation of TizAlC, through an intermediate car-
bide of Ti3AIC. An intermediate carbide of TizAlC was formed
from a reaction between AlTiz and graphite and then, TizAIC fur-
ther reacted with graphite to form Ti>AlC and TiC. TizAlC, was
not formed through the direct reaction between TizAlC and
graphite. On the other hand, direct conversion of Ti2AIC and TiC
to TizAIC, could occur without formation of intermediate
phases.'”’ Hahn reported that TisAIC, was formed at 1000°C for
0 min. In their process, the observed intermediate carbide was
only Ti,AlIC. In this study, in which an intermediate carbide of
TizAIC was formed during the synthesis of TizAlC2, no peaks
correspond to Ti3AlC. was observed even after calcining at
1400°C for O min. This indicated that the formation of Ti;AlIC
lead to a complex reaction route during the synthesis of TizAlCa,
and made formation temperature of TisAIC: higher. Higher firing
temperature promotes evaporation of Al during the synthesis of
TizAlC, and the composition shifts to off-stoichiometry. There-
fore, the formation of TizAlC as an intermediate compound is not
favorable for the synthesis of high-purity Ti;AlC,.
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4. Summary

The conclusions obtained are summarized as follows,

(1) A layered ternary carbide TizAlC: was synthesized by
pressureless calcining process from mixtures of titanium, alumi-
num and graphite powders. Almost single-phase TizAlC, was
obtained after calcining at 1400°C for 4 h. Ti;AIC, which was
seldom reported in previous literatures, was observed as an inter-
mediate carbide.

(2) The microstructurral evolution during the formation of
TizAlC> was examined at the temperature from 900°C to 1400°C.
Based on the results of X-ray diffraction (XRD) and energy-dis-
persive X-ray spectroscopy (EDS), a possible mechanism was
proposed. Above the melting point of aluminum, liquid Al reacts
with titanium to form the intermetallic compound of AlTi;. As
the temperature is increased to 1300°C, the intermetallic com-
pound of AlTis reacts with graphite to form TizAIC and then,
TisAlC further reacts with graphite to form Ti>AIC and TiC. As
the temperature is increased to 1400°C, the final product of
TizAlC: forms through the reaction between Ti,AlC and TiC.

(3) During the synthesis of Ti3;AlC,, the formation of Ti;AIC
lead to a complex reaction route, and made formation tempera-
ture of Ti3AlC, higher. Higher firing temperature promotes evap-
oration of Al during the synthesis of Ti3AlC, Therefore, the for-
mation of TizAIC as an intermediate carbide is not favorable for
the synthesis of high-purity TizAIC..
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Influence of Distribution of Al Additive on Properties of MgO-C Refractories

Fuminori Hirose, Akira Yamaguchi, Yasuhiro Hoshiyama and Junji Ommyoji
Okayama Ceramics Research Foundation

1406-18, Nishikatakami, Bizen-shi, Okayama 705-0021, Japan

Abstract : Various kinds of Metal are added to carbon-containing refractory as antioxidant. The degree of the effect
of metal is different by kind, quantity and distribution in the refractory. In this study, the most effective and ideal
method of the Al distribution in the refractory was examined. As a result, when Al metals distributed among graphite
grains, pore size of the refractory became smaller and its decreasing of strength was restrained after heating.
Moreover, densification of the refractory was promoted because of formation of spinel crystals among the graphite
grains. On the other hand, when Al grains are on the surface of MgO grains, pore size became lager and the strength
decreased.

From the above-mentioned results, it is desirable to distribute Al grains among graphite grains during process of
mixing raw materials of the refractory.

Key words : microstructure, Al-additive, MgO-C brick, carbon-containing refractory, densification
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B L MgO-CARI I OFFIEIZ BT AR O 515 O

W, BRAEPTEA & LTINS N B Al SAi A Rl % 2
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2 ERAZE

2.1 FERMER

R 1IIMgO-CILADFEHNT I 72 Bk & EURHT 0 fili 1]
WHRERT, 4B, BPDex. 5 1ZLHDTH B EHMO
EHRBHOEROAF Z100mass% L, 2D 5
mass%lZH 7z EEDAMEEBRML A2 L 2%,
WL72Ei~ 7227 (LLTFMg0) i, %7 L5 L3
Bl MEI9mMass% T, FE I mmUTOBEELS, 5Hbn
THAZ0SmmAK DR T 2 I B THEH U 7zo WK~
(LIRS &, ERE, HE99mass%, REE1S0umElT
DHDEMH L7z EBT7T NI =T 28K (UTAHBK)
&, BET VI = A8, HE99mass%, HEE45umEL
TOLDOERMH LI, #HERELT, FEAXR=2751 MK
WO RTy o BHAR7 = 7 — VIR 2 v, Wik e L
T, ANFHFRAFL YT NI I U EHT L7z, ADERRNT,
K1OBEWZRHEOE, —HFMIEL, 200T x 12ho
BB % 4T > TPEEL L 72,

B OERFN 2 RS, FRIIMA SR L 23
Feffiy 5720 200 TiTo 7z —Jiid, MgO& ALl
AKBIU 7=/ - VERZRAR, BEEMREL,
D—{B% ¢30mm X 25mm® PIEEIRIZ, it 120mm X
25mm X 25mm @ B F A EEH —HE R % 17V, 200T -
I2hDBIL % 4T 5 720 DL EOTFIACIER L 72308 2 M-
Al L7zo b5iE, MgOk 7 =/ —VBHgE G %, 2
M mziREEbE, RBICARZMARML, M-Al
E RO KR & & O FARIRBUE & 177 B — i E S
L, 200C-12hD A% 1T o 7o UL EDTNTIER L 72
HEEM-CE L7 MAEREE > SHER #/EHL, M
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Mg, —RF: BTSN AR L KR & 1
W, SRR L CiT o 720 F72, MEEE o
i EEs e YEmENEE Hiv e L, 32 Bermohic
ML T, BIUEAR, 1600T-3h, H#HAE 5 CT/min

Table T Composition of MgO-C brick samples
Raw material Mass'%
Fused Mg0O (0. 5-1mm) 50
Flake graphite (<0.15mm) 50
Al powder (<45 um) ex. b
Phenol resin ex. 6
Hexamethy lenetetramine ex. 0.6

Mg0] [resin]
mixing [graphite
mixing

(Mg0] I [resin|

mixing [graphite

m|x+|ng mix+ing

pressing pressing

drying drying
{

M-Al sample

Fig. T Production process of MgO-C brick samples.
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3 #ER

212200 C MM O MBS B B % R ¥, M-AlDOM
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D SNb, —J, M-Cid, AERDE A BRI
L TWw5B,

3T B> 200°C # AL 1% & 1600°C BERL # 0 REMER
ILEZRT . 200CHAM %, 1600CHERL 2, M-CO
RBEILERIEM-AD RIS ILE L VKL o T b,

412200C #ALsi i & 1600 CHER FZ O P il & 2 783
g LT, AUREZRINE TR L 2230 o fh s
B P TR T, 200C BB TR T, BRI, M-AL
M-CREHEICHE R 2GR ok ve 1600 CHEK £ T,
M-CHH b MBENE <, KWTM-ADE L, AWEE R
ML TV ZWEE R DKW EZRL T 5,

5, K612, M-AlB X UM-CD1600T B # D&
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Fig.5 X-ray diffraction pattern of M-Al sample after
heating at 1600°C.
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Fig. 3 Apparent porosity of MgO-C brick samples after Graphite

baking at 200°C and heating at 1600°C.
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after heating at 1600°C

Bending strength of MgO-C brick samples after
baking at 200°C and heating at 1600°C.
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Fig.7 EDS analysis of M-Al sample after heating at
1600°C (surface area of MgO grain).
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Fig. 8 EDS analysis of M-C sample after heating at 1600°C (graphite matrix area).
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Fig.9 Pore diameter distribution of MgO-C brick
samples after heating at 1600°C.
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Formation of pore
| Al4G3(s)

Fig. 10 A model of the pore formation in MgO-C brick
with Al additive during heating.
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Fig. 11 Equilibrium partial pressures of Al gas. (P’=
0.1MPa)
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Fig. 12 A proposed model of the pore formation in M-Al and M-C samples during heating.
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Fig. 13 Equilibrium partial pressures of gases in the Mg-
Al-C-O system. (P°=0.1MPa)
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Fig. 14 A proposed model of formation of MgAl,O, in M-
Al and M-C samples during heating.
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Paper

Reaction Mechanism and Effects of Al4SiC4 Added to MgO-C Brick

YASUHIRO HOSHIYAMA, JUNJI OMMYOJI and AKIRA YAMAGUCHI

Abstract
An investigation of the effects on the behavior of MgO-C brick with added AlsSiC, resulted in the following conclusions:
(1) Above 1000°C the mass and strength of MgO-C brick increases gradually and the porosity decreases with addition of Al4SiCa.
(2) ALSiC, reacts with CO gas to form spinel (MgA1,04) and SiC above 1000°C. The product SiC also reacts with CO gas to form forsterite
(Mg2Si04) above 1200°C. These reactions involve an increase of mass and volume which causes densification of the texture.
(3) Bricks containing AlsSiCy4 have high hydration resistance after heating because Al4C; and AIN are not formed in the reaction processes.
(4) It was found that Al(g), SiO(g) and Mg(g) form in the brick texture at high temperature. The gases are considered to disperse and
condense in the pores and the texture is therefore densified efficiently.
Key words: Al4SiC4, MgO-C brick, Si4Cs, Densification

1. Introduction

It is important in the selection of a non-oxide as an antioxidant
for carbon-containing refractories such as MgO-C and Al,O3-C
that the additive is suitable for the operation conditions of the
refractories because it has a large influence on their chemical and
physical properties.

Recently, various non-oxides of Al-Si-C system are being

investigated as new antioxidants'». Among the various

compounds in this system (Al4SiCs, Al4SiaCs, AliSiaCr AlsSizCs
and AlsSiCy), the compound Al4SiC4 has thermal stability over a
wide temperature range, a high melting temperature of 2037°C
(Fig. 19) and excellent hydration (or slaking) resistance.

This paper will present the results of an investigation on the
reactions occurring in MgO-C brick with Al4SiC4 additions and
effects of the additions on brick properties.

2. Experiment

2.1 Preparation of Specimens

2500 . E An Al,SiCq powder was made from metallic Al powder (-200
LAl C+Liquid  C+Liquid 1 o L
| -12500 mesh), metallic Si (=325 mesh) and carbon black. The mixing ratio

SiC+Liquid | . .
© 2000 p—— B RIS X was the same as the elemental composition of AlsSiCs. The
< T CALSEG -~ . . . . .
> i """"'-a—sx'cja;'z;;s": ® mixtures were ball milled for 10 h in the dry condition, put into a
ot '4%-3)
= L ALSIC —.2000 *3 carbon crucible and fired at 1700°C for 3 h in Ar atmosphere. The
g 15001 (siC 4A: C4) 1 g fired mixture was then milled in a ball mill for 10 h in the dry
i 3
E‘ ! ] 1500 E condition to obtain a fine powder having 8 LLm mean particle size.
E: = 5 = The X-ray diffraction analysis showed that the fine powder
1000 1106C . .
L SiC+Al,Cs consisted of only Al4SiCa.
! . 41000 Table 1 shows the composition of the experimental MgO-C
Alo C MSO()I % éo(oj bricks. Experimental bricks No. 4 and 5 have the same molar ratio
i
43 of Al and Si for investigating the difference in effect between
Fig. 1 Phase diagram of pseudobinary Al;C;3-SiC system. AlSiCy and the mixture of metallic Al and Si. The purity of
Table 1 Composition of the MgO-C brick samples
[mass%]
No. 1 2 3 4 5
Fused MgO (< 1mm) 80 80 80 80 80
Flake graphite (< 0.15mm) 20 20 20 20 20
Al powder (< 75um) ex.3 ex.3
Si powder (< 45pum) ex.0.8
AlLySiCy powder ex.3 ex.5.1
Phenol resin ex.d |ex4 |ex4 |exd |exd
Hexamethylenetetramine ex.0.4 | ex.0.4 | ex.0.4 | ex.0.4 | ex.0.4
Okayama Ceramics Research Foundation
100 1406-18, Nishikatakami, Bizen-shi, Okayama 705-0021
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electro-fused MgO and the flake graphite was 99 mass%. Each
mixture was pressed under 127 MPa to form green bodies which
were heated at 200°C for 6 h to harden (hereafter called hardened-
body).

2.2 Measurement Procedures

The apparent porosity, bulk density and an apparent specific
gravity of the hardened-bodies were measured with the
Archimedes method. The crushing strength was measured with a
universal testing machine in which the compressive stress was
loaded on the surface that was perpendicular to the surface that
received the forming pressure.

Hardened-bodies were buried in graphite powder to maintain a
reducing atmosphere and heated in an electric furnace at 10°C/min,
held at a prescribed temperature for 3 h and cooled in the electric
furnace to produce heat treated-bodies.

The crystal phases in each heat treated-body were analyzed
with powder X-Ray diffraction. The oxidation resistance was
evaluated with an air oxidation method whereby the oxidation
thickness was measured on a heat treated-body 20 x 20 x 20 mm
that had been quickly put into an electric furnace kept at a
prescribed temperature, held for 3 h and removed and cooled in air.

The hydration resistance of a heat treated-body was evaluated
by observing the deterioration of structure while'it was kept in a

room under ambient conditions.

3. Results '

Figure 2 shows the change in mass of hardened-bodies when
they were heated at the prescribed temperatures in reducing
atmosphere. Thermal decomposition of the binder was completed
by 800°C and the increase in mass when the hardened-bodies were
heated at temperatures higher than 800°C indicates the occurrence
some reactions. Considering the value at 800°C as the base weight,
the mass of both the experimental MgO-C bricks No. 2 and No. 4
with added metallic Al powder increased sharply up to 1000°C
indicating a reaction with a large increase in mass. The mass of
both experimental MgO-C bricks No. 3 and 5 with added Al4SiC4
continued to increase up to 1400°C and displayed a larger mass
increase at 1400 and 1500°C than bricks 2 and 4. These facts prove
that Al4SiC4 causes larger mass increase than Al.

Figure 3 shows the change in the apparent porosity when the
hardened bodies were heated at the prescribed temperatures in a
reducing atmosphere. The apparent porosity of green bodies No. 3
and 5 with added Al4SiC4 were larger than those of the
experimental MgO-C bricks 1, 2 and 4. The reason for the above
results may be that the addition of Al4SiCy4 caused a porous green
body. The increase in the porosity on heating to 800°C was caused
by the thermal decomposition of phenol resin. The porosity of the
heat treated-body No. | without added antioxidant increased with
further rise of temperature, and the porosity of No. 2 and 4 with
added metallic Al remained the same. On the contrary, the porosity
of both heat treated-bodies No. 3 and 5 with added Al;SiCy4
decreased slightly above 1000°C, and their porosity at 1500°C
decreased 2% from the value at 800°C. These results describe the
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Fig.2 Mass changes of the MgO-C brick samples during
heating in the reducing atmosphere.
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Fig. 3 Apparent porosities of the MgO-C brick samples
after heating in the reducing atmosphere.

densification of heat treated-bodies containing AlsSiCy4
corresponding to the increasing mass by reactions as shown in
Fig. 2.

Figure 4 shows the change in the crushing strength of bodies
heated at the prescribed temperatures in reducing atmosphere. The
crushing strength of all the hardened bodies decreased on heat
treatment at 800°C. On heat treatment above 800°C the crushing
strength of bodies 2 and 4 with added metallic Al increased

]
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Fig. 4 Crushing strength of the MgO-C brick samples after
heating in the reducing atmosphere.
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significantly when they were heated at 1000°C, especially that of

No. 4 with added metallic Al and Si. The crushing strength of No. 3
and 5 with added Al4SiC, did not increase much when they were
heated at 1000°C. The strength of body No. 3 with 3% Al;SiCy
remained the same at 1200°C but increased on further healing at
1400 and 1500°C. Body No. 5 with 5.1% Al4SiCy increased
strength on heating at 1200°C and higher. It is characteristic that
the increase in crushing strength of No. 3 and 5 was not rapid but
slow. This slow increase in the crushing strength should be worthy
of notice from resistance against thermal shock. On the other hand,
the rapid increase in the crushing strength by adding metallic Al
(No. 2 and 4) seems to make the resistance against thermal shock
low. When the heat treating temperature was 1500°C, the crushing
strengths of No.2 and 3 were almost equal, and the crushing
strength of No. 4 with added metallic Al and Si was a little higher
than that of No. 5 with added Al4SiCy. Also, Fig. 4 shows that the
crushing strength of No. 5 was larger than that of No. 3, namely, the
crushing strength is larger as the addition amount of Al4SiCy is
greater.

Figure 5 shows crystal phases of heat treated-bodies. Periclase
and graphite are disregarded, because they are the main
components. The ordinate represents the relative height of a single
peak corresponding to each crystal phase detected by the powder
X-Ray diffraction. All of the metallic Al in hardened-bodies No. 2
and 4 disappeared and Al4C3, AIN and MgAl,O4 (spinel) were
formed on heating at 1000°C. Concerning No. 2 and 4, these
reaction products increased a little when it was heated at 1200°C
and above, but the constitution of crystal phases scarcely changed.
However, the spinel peak became much stronger when it was
heated at 1500°C. Concerning the hardened-body No. 4 with added
metallic Al and Si, SiC was formed at 1000°C above, and
especially the SiC peak increased on heating at 1500°C. The
phenomenon that both bodies No. 2 and 4 heated at 1500°C
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contained carbides such as Al4Cs and SiC and a nitride such as AIN
is similar to the typical crystal constitution of MgO-C bricks with
added metallic Al and Si after being heated at a high temperature.

Concerning the hardened-bodies No. 3 and 5, no crystal phases
except AlySiCy were detected at 800 and 1000°C, spinel and SiC
were detected at 1200°C and above and Mg,SiOy (forsterite) at
1400°C and above. Differing from No. 2 and 4, Al,C; and AIN
were not detected. Al4SiCy started to disappear at temperature
higher than 1000°C and disappeared completely at 1400°C. These
facts show that the reaction of Al4SiCy progresses slowly from
1000 to 1400°C, and is coincident with the slow change in physical
properties from 1000°C suggested by Figs. 2-4.

Figure 6 shows the results of the oxidation tests. White bars
show the thickness of the decarburized layer on each hardened-
body after being quickly heated at 1400°C. It is clear all the
antioxidants were effective in reducing oxidation because the
decarburized layer of all the experimental MgO-C bricks with
added antioxidants (No. 2-5) was smaller than that of the MgO-C

brick No. | with no added antioxidant. The decarburization

O after baking at 200°C
O after heating at 1400°C

Decarbonized Layer Thickness /mm

No.1 No.2 No.3 No.4 No.5

Fig.6 Oxidation test results of the MgO-C brick.
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Fig. 5 Mineral phase of the MgO-C brick samples after heating in the reducing atmosphere.
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Fig. 7 Hydration test results of the MgO-C brick samples.

thickness of No. 2 with 3% Al powder was almost equal to that of
No. 3 with 3% Al4SiC4 and the thickness of No. 4 with Al and Si in
the same mole ratio as Als+SiC4 was almost equal to that of No. 5
with 5.1% Al4SiC4 proving that the anti oxidation effect of Al4SiCy
is equal to that of Al powder and the mixture of Al powder and Si
powder.

Gray bars show the thickness of decarburized layer when each
heat treated-body (1400°C, 3 h reducing atmosphere) was heated
rapidly at 1400°C in an oxidizing atmosphere. The decarburized
thickness of No. 3 and 5 with added Al4SiC4 was almost equal (o
that of No. 2 and 4 with added metallic Al powder.

Figure 7 shows photos of bodies heated at 1400°C for 3 h in
reducing atomosphere and left for 2 weeks in a room in ambient
conditions. No. 2 with only metallic Al powder swelled, collapsed,
came to pieces and had no trace of the original form. No. 4 with
metallic Al and Si swelled, cracked and lost its structural strength.
No. 3 and 5 with added Al4SiC, did not swell or crack and retained
their same sound structure as did No. 1. It is assumed that the
reason why No. 3 and 5 had excellent resistance against hydration
even though the Al4SiCs was heated at high temperatures is that the
added AlsSiCy did not change to Al4C3 and AIN (see Fig. 5) which
easily reacts with H>O.

4, Discussion

The first discussion is on the stability of Al4SiCy under low
temperature conditions.

As shown in Figs. 2-5, the addition of Al;SiC4 to the
experimental MgO-C brick brought about densification and an
increase in strength and mass accompanying the reaction of
ALSiCy changing to oxides and SiC at 1000°C and above. As
Fig. 1 shows, according to equilibrium theory Al,SiCy is stable in
the region higher than 1106°C and it decomposes to Al4C; and SiC
below 1106°C. But, as Fig. 5 shows, Al4SiC, exists in the heat
treated-bodies No. 3 and 5 heated at 800 and 1000°C. This fact
points out that ALSiCq4 exists as a metastable phase because it
decomposes slowly in the low temperature region.

The second discussion is on the reaction at high temperatures.
In the case of reactions in carbon-containing-bricks, it is important
lo consider gases in pores. The surface of a carbon-containing-
brick laid on the inner wall of a furnace operated in ambient
atmosphere is generally exposed to air, but the inside of the brick is
filled with CO when the temperature of the brick is higher than

1000°C. Furthermore, the CO pressure is nearly the same as
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atmospheric (about 0.1 MPa)”, so the environmental condition
inside the brick consists of a CO gas phase at about 0.1 MPa, partial
pressure and a solid phase of carbon. Therefore, Al4SiCy4 existing in
this environmental condition reacts mainly with CO through a
solid phase - gas phase reaction. It can be considered that the
environmental conditions for the experimental MgO-C bricks
buried in graphite powder are the same as the above mentioned
conditions. The relation between the temperature and the stable
condensation phase in this case calculated using the Gibbs’ free
energy can be described as Fig. 8% where the horizontal axis is the
dimensionless partial pressure of CO normalized by dividing an
actual partial pressure by 0.1 MPa being the pressure of the normal
state, STP (0°C, 1 bar). Figure 8 shows that the condensation
phase, [AleSi203 (mullite) + Al,O3 + C], is stable in the domain
lower than 1560°C, and that Al4SiCy transforms to the stable
condensation phases at temperatures experienced by the
experimental MgO-C bricks.

Figure 5 shows that Al;SiCy in the experimental MgO-C
bricks starts to change to MgAl,O4 (spinel) and SiC at 1200°C.
This is the first step of the changes. Spinel and SiC increase,
Mg,SiOy4 (forsterite) starts to form, and at the same time, the
oxidation of SiC, one of the second step reactions, proceeds at
1400°C. These reactions are expressed by the equations below
showing that as the oxidation-reduction reaction between Al;SiCqy
and CO progresses in MgO-C brick an oxide, carbide and C are
formed. It is assumed that the oxide reacts immediately with MgO

in MgO-C brick to form a complex oxide.
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= 1,03(s)-SIC(s
¢ 7r Al03(s)-AlgSin015(s)
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Fig. 8 Stability domains of condensed phases in Al-Si-C-
O system (P° = 0.1 MPa).
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The first step reaction:

ALSIC,(s) + 6CO(g) = 2A1,04(s) + SiC(s) + 9C(s) (D

MgO(s) + Al,O,(s) = MgAl,0,(s) 2
Total of Eq. (1) and (2);

2MgO(s) + AlSIC,(s) + 6CO(g)
= 2MgALO,(s) + SiC(s) + 9C(s) 3)

By the way, considering the state at 1700 K shown in Fig. 8, as
long as Al4SiC, exists, the dimensionless partial pressure of CO is
approximately 10 and SiC stably coexists. However, the
dimensionless partial pressure of CO rises to 107 when AlsSiCy(s)
disappears and the next reactions proceed.

The second step reaction:

SiC(s) + 2CO(g) = SiO,(s) + 3C(s) @)
2MgO(s) + SiO,(s) = Mg,SiO(s) (5)

Total of Eq. (4) and (5);
2MgO(s) + SiC(s) + 2CO(g) = Mg,SiO(s) + 3C(s) (6)

Table 2 giving the calculated changes in the mass and the volume
of MgO-C brick by means of each unit reaction, provided that a gas
molecule is neglected, shows that both the first and the second step
reactions are accompanied by an increase in the mass and volume.
It is clear that the contribution of CO(g) producing C(s) to the
increase in mass and volume is large. In other words, it is suggested
that Eq. (1) and (4) are deeply related to a densification of
structure.

The third discussion is on the mechanism of the progress of Eq.
(1) - (6) in an MgO-C brick.

Indeed, many kinds of gaseous substances such as Al and Si

compounds in addition to CO exist in the above mentions reaction

system and play an important role. Figure 9% shows the
equilibrium partial pressures in the Al-Si-C-O system at 1700 K
calculated using the Gibbs’ free energy. Although there are many
kinds of gaseous substances, it is sufficient to select only two
gaseous substances, Al(g) and SiO(g) having relatively large
partial pressures, for considering the mechanism of the above
mentioned reaction system. Both of the partial pressures of Al(g)
and SiO(g) change with the partial pressure of CO, and those reach
about 10 in the highest domain, sufficient to influence the
progress of the mechanism.

Figure 9 also describes the relation between stable
condensation phases and the partial pressure of CO., Namely, the
Al4SiCy(s) + C(s) phases are stable under 1073, the Al,Os(s) +

0 1700K
T T T T T T
ALSICa(s)-C(s) | Al03(s)-SiC(s)|  AlaOs(s)-
- —C(s) AlgSiz043(s)-C(e)
4k A S0 \
-y/
& g Si(g)
B .
i SixC(g)
jo2 AlO
S s g Sia(@)
sic) | ~NICW
Sis(g)
16 ~Al02(9)
- AlO(g)
1 1 I 1 | 1
-20g ) ) 0 2
log(Pco/P°)

Fig. 9 Equilibrium partial pressures of gases in Al-Si-C-O
system (P° = 0.1 MPa).

Tabie 2 Calculated mass and volume changes of the reactions in the MgO-C brick

Equation No. Mass change /% Volume change /%
1 +91.3 +199.2
2 0 +7.8
3 +63.5 +137.0
4 +139.7 +423.4
5 0 —9.8
6 +46.4 +136.8

*Following values were used as density

[x10° kg=m™)

AlSiCy(s):3.03 Al,05(s):3.99 SiC(s):3.22 Si0x(s):2.33
MgALO4(5):3.58  Mg,Si04(s):3.22  C(s):1.60
AlLSiCy(s) + 6CO(g) = 2A1,04(s) + SiC(s) + 9C(s) (1)

MgO(s) + Al103(s) = MgA L Ou(s)

@)

2MgO(s) + AlsSiCy(s) + 6CO(g) = 2MgALO4(s) + SiC(s) + 9C(s)  (3)

SiC(s) + 2CO(g) = SiOx(s) + 3C(s) (4)
2MgO(s) + SiOa(s) = MgzSiO(s) (5)
2MgO(s) + SiC(s) + 2CO(g) = Mg2SiO; (s) + 3C(s) (6)
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SiC(s) + C(s) phases are stable between 10~ - 10°7 and the
AleSi2013(s) + Al,O3(s) + C(s) phases are stable over 1077,
Therefore, the partial pressure of CO near the surface of Al,SiCy
particles in a MgO-C brick is approximately 107, so that it may be
assumed that Al vapor of may generate from the surface of Al,SiCy
and disperse in the surrounding structure where the partial pressure
of Al(g) is low and that of CO is high, since the partial pressure of
Al(g) is the highest under this condition. This reaction can be
expressed by means of Eq. (7). Al,O3 deposits through Eq. (8),
when the partial pressure of CO is higher than 10-. It is assumed
that these vaporization and condensation reactions continue near
AlySiC, grains liberating SiC and C.

ALSIC,(s) = 4Al(g) + SiC(s) + 3C(s) )
2Al(g) + 3CO(g) = AL,O,4(s) + 3C(s) )

By the way, Al,Os, an oxidation product of Al4SiC4, was not
detected but spinel was detected (see Fig. 5). The reason may be
that Al(g) diffused to MgO grains existing apart from Al4SiCy4 and
the reaction of Eq. (9) occurred, or that Mg vapor generated from
MgO grains next to Al4SiC4 grains caused by the drop of the partial
pressure of CO to about 107 because of the coexistence of Al,O3
(see Eq. (10)).

Figure 10” shows the relations among the equilibrium partial
pressure of Mg(g) originating in MgO(s) calculated using the
Gibbs’ free energy, the partial pressure of CO and a temperature.
When the partial pressure of CO is 107, the vapor pressure of
Mg(g) is 10~ at 1200°C and reaches 10™'-1 at 1400-1500°C, which
is on a level able to influence the reaction. It is assumed that Mg(g)
and Al(g) diffuse in the neighboring structure and spinel is formed
through Eq. (11) in parts where the partial pressure of CO is high.

Temperature /°C

2000 1800 1600 1400 1200 1000
NI L T T T L

+2

MgO(s) + Cls)

2

-4

log(Pco/P°)

64— i
Mglg) « COl(g)

i

1T x10* /KT

Fig. 10 Equilibrium partial pressures of Mg gas in the Mg-
C-0 system (P° = 0.1 MPa).
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MgO(s) + 2Al(g) + 3CO(g) = MgALO,(s) + 3C(s) )]
MgO(s) + C(s) = Mg(g) + CO(g) (10
Mg(g)+2Al(g)+4CO(g)=MgAIZOA(S)+4C(s) (1D

It is assumed that Al(g) and Mg(g) diffuse through continuous
pores and the partial pressure of CO is also high in continuous
pores. In other words, Al(g) and Mg(g) diffuse and condense in all
gaps, namely, all of the gaps are filled with spinel and C with the
result that the porosity decreases as shown in Fig. 3. Similar to the
above, it is assumed that SiO(g) originating in SiC formed through
Eq. (7) densifies the structure by diffusing and condensing in gaps.

The reaction equations are as below.

SiC(s) + CO(g) = SiO(g) + 2C(s) (12)
2MgO(s) + SiO(g) + CO(g) = Mg,Si0,(s) + C(s) (13)
2Mg(g) + SiO(g) + 3CO(g) = Mg,Si0,(s) + 3C(s) (14)

Figure 11 shows the microstructures of hardened body and heat-
treated body of the experimental MgO-C brick No. 3 with 3 mass%
Al,SiCy. The AlySiCq particles in the hardened body are observed
as fine particles with a high brightness. Those are not observed in
the heat treated-body heated at 1500°C, but a reaction product
consisting of a lot of extremely fine particles with a low brightness
is observed. This reaction product exists among graphite particles
or between MgO and graphite particles. The distribution density of
the reaction product is clearly larger than that of Al4SiCy in the
hardened-body. This fact proves that gases generated from AlsSiCy

particles diffused to the surrounding structure and formed the

I Tt
g R

Graphite

g0 AL e
‘h iy % l
ST
ittt AR A A,
(a) before heating
~ Reaction"product g 8
: PN

1A

(b) after heating at 1500°C for 3 h

Fig. 11 Microstructures of the MgO-C brick samples with
A;SiC4 (No. 3).

105



—MMEEARLULS I v 7 IFHREME MR - BATKRHEE (2008-2014)

YASUHIRO HOSHIYAMA etal. Journal of the Technical Association of Refractories, Japan, Vol.30 No.2

o Graphite

(b) after heating at 1500°C for 3 h

Fig. 12 Microstructures of the MgO-C brick samples with
aluminum (No. 2).

reaction product. This fact also agrees with the reaction mechanism
mentioned above. Summarizing the above discussion, it is assumed
that Al(g), SiO(g) and Mg(g) generated from Al4SiCy and MgO
diffused in the pores formed by the thermal decomposition of
phenol resin. The extremely fine particles of complex oxides and
carbon are formed in the place where the partial pressure of CO is
high, and the structure is made dense.

Figure 12 shows microstructures of experimental MgO-C
brick No. 2 with 3 mass% of added metallic Al powder (exclusive
ratio). There are relatively large holes where metallic Al originally
existed in the hardened body in the heat treated-body heated at
1500°C for 3 h. It is already known that metallic Al powder in an
MgO-C brick melts at 660°C, a shell of Al,C3 forms on the surface
of the liquid Al, the shell tears and the liquid Al diffuses out leaving
a large pore'”. The formation of large pores by the above
mechanism is considered to be a fault in the use of metallic Al since
pores make a weak brick structure. Al4SiCy is superior to a metallic
Al in this regard since the Al4SiCy does not create pores but rather

redction products deposit in the pores.
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5. Conclusions

The results of the investigation on the reaction mechanisms of
ALSiCy as an antioxidant for MgO-C brick and its effects are given
below.

(1) The mass and the strength of MgO-C brick with added AlsSiC,
gradually increases and the apparent porosity linearly
decreases as the heat treating temperatures rises in the range
higher than 1000°C.

(2) The addition of Al4SiCy results in oxidation resistance almost
equal to that of metallic Al addition.

(3) ALSiCy gives MgO-C brick a high resistance against
hydration, since it does not generate AIN and Al,C; which are
casily hydrated.

(4) AlLSiCy reacts with CO in a MgO-C brick to produce MgAl,0,4
(Spinel) and SiC at temperatures higher than 1000°C. SiC
reacts with CO in a MgO-C brick to produce Mg,SiOy
(Forsterite) at temperatures higher than 1200°C. These
reactions are accompanied by an increase in mass and volume
resulting in a dense structure.

(5) Al(g) generated from AlsSiCy4, SiO(g) from SiC and Mg(g)
from MgO diffuse, react and produce a lot of particles in pores
remaining from the disappearance of the phenol resin binder.
The structure of an MgO-C brick was densified by particles

filling in the pores.
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#£7 MgO-ChhprDBITEBEMRERIER

ER Z & BE Er N 8 e BMREE
/mm /g-cm™ /mm?-s” /J-g"K' /W-m"-K"
X4 10.44 2.878 9.95 0.891 25.5
HER A X 10.43 2.893 9.83 0.879 25.0
No. X3 10.22 2.908 9.75 0.890 25.2
X4 10.43 2.896 9.70 0.901 25.3
Ti9E 10.38 2.904 9.81 0.89%0 25.2
SD 0.107 0.012 0.11 0.009 0.2
RSD /% 1.0 0.4 1.1 1.0 1.0
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RESEMANITHI U TzALO,CDIER
EILFREE, WOWHR

Bt 3y 7 ABAHREM B T705-0021

] 1L LA R T P8 A 1406-18

Effects of A1,0,C Added to Carbon Containing Refractories

Yasuhiro Hoshiyama and Akira Yamaguchi

Okayama Ceramics Research Foundation, 1406-18 Nishikatakami, Bizen-shi, Okayama 705-0021, Japan

F—-U— R REESHEXY, ALOLC, KIS, #MEL

1 #EE
MgO-C& AlLOy-CHE D R FEEH I KW R FEOBRALE
EZEME LTEBAIDTEMP TN Tw5, £EANIL
BRTCHAWFORERLCOHN A & UG U THIKk T &%
2En L eI, MESERL, WMHMEICEE %S
EFRELTVS, Lo L, BS@ECERT 2ALC, 9k
FIRF L RF <, AL IS K AL % i S 2 5720,
KBS AT & 9 % HBREE OREBRIFAET CRIEICHR
) #855%, FHEOHMBEEL TS, TR
AlIARERIST B0, F ¥ X5 7V KW 8L
EFE L THWAZ LD TERVWEWVWIREDLD D,

INLOERAIOMBEZ MR TELYWHE LT,
ALOCHHIFES hTwa ", ALO,CIE £ S A
MEICEN, £RAIEABOBHAHELAELDD, K
B TALC, R ER LAV EZZONTED Y, £EAl
Db Y IZALO,CEHVA Z &2 & B REGHFM K=
* oy 27 TNVEKYOERR EAHES T2, £/
ALOCHERBTRE LTAMI & E RV Eh 5,
ZIFALSIC, 2 B HARTEI D EVARICHENTE D L ¥
ZbN5b, KT, EBIZALOCE KEGHTAY
IR L 723 A OFEAIC O W T, MgO-CILADY, AlLO4C
NADVEWNHRE L TRE Z1To 7%,

2 AlLOCHERDIER

EEIHEHT 5AL0,CHEERDFETER LY,
FRELT, TVITHE &B7NVI=0 20K, KE
BEREH Wz, 7V FHRITIEALEL9.9% T FIH 0.2
um® oAl %, ERB TV I = ARFRITIIHMEILY% T
63 umB T CPHREH30um) ObO%, FkBEME
ZIAIRE99% T75 um AT OBk R 2/ L 7z, FER
ERVIORTESTRAL, #xXK— )L IV TIOhERAE L
ToBITHERL L7z BEUCIZE BB A — R VPR v, R
FHE B & BE D DIRII AT b ORI L Tl
oo BZEF|ZIZL o THFRORRZEZHB LA2BICT VT Y
HAZWAEE, MAGEHIZ7 VT H A% 10 -min"'
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Table1 Mixture ratio /mass%

Al,O, 0.2um 73.9

Aluminum -63 U m 19.6

Flake graphite -754m 6.5

3000 |
° ® ALO,C
2 ° o 0 a-ALO,
5 X ALC,
& 2000 F
~
ﬁ?‘ ? ©
@ e
S 1000 R
E jﬂLA |
° © ®. N f * o °®e o e
0 A J Y LA KJ“\M
10 15 20 25 30 35 40 45 50 55 60
260 /degree
Fig. 1 X-ray powder diffraction pattern of the synthesized
Al,O,C powder.
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Table 2 Composition of MgO-C samples /mass%4

No. 1 ‘ 2 [ 3 ‘ 4 5 | 6 | 7 ' 8

Fused MgO —1mm 65 60

—75um 30 25
Flake graphite —150um 5 15
Al 30um ex.4 ex.4
Al,0,C 20um ex.4 | ex.6.8 ex.4 ex.6.8
Phenol resin ex.3 ex.4
Hexamethylenetetramine ex.0.3 ex.0.4

WMLz D% ER L7, No.d4, 8id, ALUTERIITE
JEAVRINE 4 mass% & [/ UEVEE 25 & 9 12ALO,CE
wmL 72,

NANRE X, R2OBEWERE, BHOR,
150MPaT—HlIER L, 200T x 12h O SMLE % 17 - T
TR L 720 (R LRADREHNCDWT, EFFEMAT U
FELUIRTEN 2T o 2810, EELLESL X W
ERITo 7z, WIEBBIIIREFHERESRT 2 H, A
HVEHELE BRI R AR LR T S hi L7ze /2K
AEPIRF TMET 5 J73: T, MgO-CILA D 3R O
LM% L L2z B L7 A PR RAEMEDBRIFE AV,
TR A LTEREL (200C B4, #925 %25 % 25mm) % §
it LR TS ZBIA L, FREEL0C min~', FTE
DU T 3hERIF L 22BN THRS T 5564 & Lize
BB OB % P IR TN L, WEOMBLFE A EIE L
120
3-2 fER

212, MgO-CNANRHEEZBETME L& &0,
200C BhLFRf A 2l & | - BB LEEZ RYT, S00CHEK
CEBEBERDE, N ryy— L THILA7 2/ —
BIROBSRIZE DD DTH D, /N1 ¥ ¥ — DG
800CTIZIFET T A0, ThULORETEL2ER

2
C=5%

e !
AN Al 4%
(0]
e o
<
©
< -1
(6]
o -2 ALLOLC 4%
©
=

-3

-4

0 500 1000 1500

Temperature /°C

BALINADPHNTORIGE X L72b DLk b, &FAL
RN L 72 A DSEEHZS00 CRE THEIZb D ¥ > 7L &
DLERBOF LR, 1000C~EBREN LA TALLEE
ISR LTV 5, ALOCERML72H D1E1000~
00Tz A CEREBNATR 51, & BITHREW K ThE
KT B EICLoT, HENITERENZ M) RS A
FLTWABI N Dbhb,

X 3 (2 BEITHER O R R ALEE & /R T, 800CHEMIC &
AEILEOWEKIE, 7/ —IVBIROBRSRIZEDLDT
Do IERMOBEKIS0CLULETOIREN LR L E B
FAEFBWRLTWDED, EBAIEZRMLZLOE
1000C TRILEL WS L T B, Zhicx L TALOCE
WL 7B RILE QWA AR 5 h e, 800CL Los
FHEBICBOTIERMOL D L) HUERILEERL T
%o

ALOCIHRMFEHZ, 1000~1400T I A F TEE AT
Rohs (B2) —HT, RILBEELLTwiRnwI Eh
5, BRI E ) FUBATPE CHEAT L T & MRS
ENQWZ Edbh b,

4 1ZMgO-CILADEEH D W T B AL % 2R 4illi L 72
RRERT, WHNBETETHILLAb DI Ob\’CGil’f&
LIEE A% 125mme LTERLTH B BEEDENIC

C=15%
=
~ Al;0,C 6.82%
quD -1 Al 4% ARshdh it
c
©
<
(@]
8 2 F Al;0,C 4%
©
= No additive
-3
0 500 1000 1500

Temperature /°C

Fig.2 Mass change of MgO-C samples during heating.
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B[ FEoge [
EINFREM RESEW XKWL 72 ALO,COVEH]

20 18
- C=5% ALOLC 4% Al1O;C 6.82% e C=15%
SNRL N 16

AlL,O;C 6.82%

> 16 >2nr AlL:0,C 4%..
= ‘o 12t
2 8
S S 10
aQ 12 Q
- 2 8 No additive
c 10
o O 6
< No additive 5
T g
oy Q 4
a Q
< 6 < 2

4 0

0 500 1000 1500 0 500 1000 1500
Temperature /°C Temperature /°C

Fig. 3 Apparent porosity of MgO-C samples after heating.
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0 T2 2y O 7 (3R ie 4

No addition Al 4% Al1,0,C 4%  Al,0,C 6.8% No addition Al 4% Al,0,C 4% Al,0,C 6.8%

Fig. 4 Oxidation test results of MgO-C samples.

£57, ALOCERMUAFHEIEBAIZRIMLAZ DD
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ALOCOBMABRENRD NG h o/ L b, MH%E
& U CTALOLCHEIZALO,CE L RTNL 72 308, % (F i
L, TOERIZDOWTHBGEEL -,

4.1  AlOCHMERDKIUDIE

Fig.5 Swelling of Al,O,C powder in water.
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B 1R L7z ALO,CAMER100gE, Al00gE ¥ — % E
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Fig. 6 X-ray powder diffraction pattern of swelled Al,O,C
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T AALOH) ML BIERLTWAZ Edibhol, 20
e, AlO ChRIZEREIZB TS BRI 4%

powder.
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B4 L ARKHPHEITTHI LD, FY AT TUAK
WE~OBIGHEEL S LA TFREI NI
KBNS, ALOCHEROKLEIFIEL, B1OE
WM RZEEFEAL ThAYRB 2RI L L7,
4.2 ALO;CNADEEIDIER
RIERLINADPEBOBRNEZRT. ALO,D
ety % &ut ALO,CHEKICERT 5 JE TALO,C% 25mass%
Fia LB 2R L7z, RIDEAWEZRE, RO,
150MPaT—#iliiERIE L, 200C X 12hO#ME % 1T > T
HEE L ERFAREME LRITRR 21T o 72112,
FEEELEB L OYWHEONEEITo /oo BITHRITKEAF
BREZIFE A, NAIRE 2 BERRICHE L IRE
T 3hin#k L7z,

4-3 #ER
B712200CMABZOHABRES LI EHELRT,
ALOCHEZLZERMUIFABHNIBEREL TREIBEKRL,
BEMEL hoTwiz, ZoO#FIL, B5, 6L
ALOCHEDRMBUS E B THY, 7=/ — VIR
O BATAL USRI IZ 54T B KERLS, ALO,CH R DAKF
JEAF &I LATREEERELTWwS, 3HETHAL
MgO-CNA D TIZALO,CRIMED D R V2D WRIZED
Lo 7zA, RABOKMIGSETLTHwAI LD E
oMb,

® 812, ALO;-CNADHE 2RI LI ED

123

N
N

Length /mm

120

No additive Al 5% Al,0,C 25%

Table3 Composition of Al,O4-C samples /mass%

No. 9 10 11
Fused Al,0, -1mm 60 60 60
-75um 25 25
Flake graphite =150 um 15
Al 30um ex.5
Al,0,C 20um 25
Phenol resin ex.4
Hexamethylenetetramine ex.0.4

200C Mz % e L L EREA(LE LR T 800CHERIZ
X BEEBRDE, MgO-COWAEERERIZ, N4y ¥F—L&
LTHRLE 72 /) — VBIROBRDMRIZLI B LD TH S,
INA V¥ — DBARIZZ00C TIRIFR T § 5700, ZhL
FORETE L BEEL(LITNADFHEPTO RS % Ft
Lb0k ks, AlLO,CEEUEEAIZRINL 7238 X
800C CHEICIERIMO b O L W BRBAH A% L, IREDS
FATHEERBBIEZFICHAL TS, COHRDPD,
AlO,CH RN L 72 30 4 f A 3K H T 1000C LA L (2 BE Rk
T5E, RBNHTERMMEZED KIS #ITTH I LD
LML o7,

K9ic, BuBEREORBEILEEZRT, €RBAIZGR
ML 723BHE, BRI TRILFELWD LTl L
Tw5s75, ALOCELERIML AL TERILEOKT

3.2

-3

30 r

28 1

26

24

Bulk density /g*cm
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No additive Al 5% Al,0,C 25%

Fig.7 Sample length and bulk density after heating at 200°C.
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Fig.8 Mass change of Al,O5-C samples during heating.
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60
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30 1 No additive
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Temperature /°C

Fig.10  Strength of Al,05-C samples after heating.
BRSNT, e REmATELI o, T2,
200CINEBEOWEHCHEENMEL o o223, &
T EE T IR L ) b B WFRILEEZRL T b,

FBEIUREBEORMmS 2 WE L2 A, BI0IR
T X912, ALOCEEM L 723 0EZ1200C Lk Tt iE A
KT HEMARSND L OO, SFAIZRNL 28
LD EE R LTz,

DLEo#EL D, ALOSCIADICALOCHEE % ik
ML E, BE#EO200CHETRANC X 5 L 8D
NDWRDFE L CERILEC 25 & & b1, MmN
WZALOCORUSAHETT LT b MO BRI R IFIEE A
ERLENT, EAALE, KREE 25 &2bhol, T
DHEIIE R DO MgO-CN AV OB EFETH Y,
BURE T, REEAW XKW ~DALO,CHKDOTMIEZ
DERENRD 5N,

5 EZR

BB EFENADIRIML 72 ALO,CHE, BB L -
TEEIMNE 9 BUSAHET LCTh, NAHENIEIHEL
ENhhol, TOWBE, KW ~OIERLY 0@ %
#2725 ECHEREE LS ENG, DIF, TOERKIID
WTERZNMA S

1000C % #8 2 5 Eii P Cld R EH AW OPNEIE EIZ
COWAFEMEAN->THEY ), ZOHEDALO,COMIN
sk (DR TERENB EEZLNE ", FMIETHHCO

HAEFUS L THAHDALO, L CE 2 ERT H720, 20
FOBAESTS % & BRABEINT %0

Al,0,C(s) +2CO(g) =2A1,04(s) +3C(s) (1)
SUBDHEFTIE & > Thih K DM TRE S 2 976 Ae
i, DROKRBELERDL I LITL>THIAZ ENT
5. REZLEZERT I3 BILEMOBEEILIEL &
Bz, TITHEBMEROEKERRDL I LE LT
NADFREOVEEIN IV 72 ALO,CHY K % SISO e L,
BEEEANE (FAE) Lk I, 286g-cm *Ofiiz
7, ML ZoABEBFRIE, BTIRLAEEL DI e-ALO,
LALCABIEL TWa R0, L) EMEMTADIC, o
ALO;DEH i % 10mass%, ALC;DEF T L 5 mass% &
5% L TALO,CHIRD B Z MA 8 5 &, 276g-cm™°
Lot TNEHCT)XOBHEELE M L 724
B, +105% 0N E LN (Rb). Zofiilk, B%L
LCERPICHFR L 22E8BAID +1227%, B XU, ALSIC,
D +159% IR TIFFITNEEER B,
WEOWIEH S, KEEHIIKYPOEEANL, ik
TTALC,RAINICZEAL L A5 M MIZIZR 4 1RT R
ISATHEAT LT, KMk A ST 5 2 e o Ty
28 A OWIGEA S, ALSIC, b EEN AL
FHTAHIENNSNER-TEBY, EOAHZALEL
T, REBERMIREL D 25 - BERBUSIZ & o TG4
B 25T KRR O R & T 5 T T UARIBI N T
7. —JALOCIZOWTE 2 B &, RUSITHE ) R
MBAVNS W E V) FHREMRIE, COTALDRUBIZE -
TEEASMALTD, AT OZR 2 WD S 5%
EATFELNHE NI EERL TS, I (1) B
2DV, 2858, Ebii ko TRRBUC RUS A B AT iR L
W EERELCH, £ERE L TofRmEnEEs/hE
Wy Z ik, ALOCK FAMEAE L T2z A2
2RISR B EEFKLTBY, AW ORILEL WA S
LR OB LD h b

Dl LY, ALO,CIEZEDILEY O AREN 2 15
ELT, REEAM XY OMME % AT BRRIN S

Table 4  Calculation results of volume change by reaction

Reaction formula Volume change™ /%
Al,0,C(s) + 2C0(g) = 2A1,04(s) + 3C(s) +10.5
2AI(1) + 3CO(g) = Al,O4(s) + 3C(s) +122.7
Al,SiC,(s) + 6CO(g) = 2A1,04(s) + SiC(s) + 9C(s) +115.9
¥ Calculated with the following density (grcm™)
AlLO,C:2.76  Al,SiC,:3.00 Al 0,4:3.99  Al:2.50 SiC:3.22 C:1.60
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MgO-ALO;RAERIVDM A S FERIMEICH KIF T ZrOaw xR

HEHUERL™, b 377, OrgiRa o RFRHE
RLUPZEE™ ", W™, ZWEL™ ", R

Wil 5 < v 7 ABFRIEE OFET

T705-0021 filiHi VY 1406-18
Effect of ZrO, Addition on the Slag Corrosion Resistance of MgO-Al,O; Spinel

Motonari Fujita, Hajime Kita, Koichi Igabo, Shinichi Sakida, Yasuhiko Benino,
Tokuro Nanba, Yoshinari Miura and Akira Yamaguchi
Research Laboratory, Okayama Ceramics Research Fowndation
14006-18, Nishikatakami, Bizen-shi, Okayama 705-0021, Japan
Abstract : The changes in the microstructure and slag corrosion resistance of MgO-Al,O; spinel due to the addition
of ZrO, were investigated. Densification due to ZrO, addition was significant at the stoichiometric composition of the
spinel (MgO =50mol%). Furthermore, the densification began at lower sintering temperatures along with the ZrO,
addition, which was confirmed in the sintered bodies containing 2 vol% of ZrO,. With increasing the relative density of
the sintered bodies, the slag corrosion resistance was improved. In the specimens of 2 vol% ZrO, addition, the slag
corrosion resistance was higher than the ZrO,free specimens with similar relative densities. In the case of 10 vol%
Zr0, addition, however, degradation in slag resistance was observed. It was finally concluded that the improvement in
the slag resistance was resulted from the increase in slag viscosity originating in the elution of ZrO, component.

Key words : refractories, molten slag, corrosion, microstructure
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Fig.1 XRD patterns of the powdered specimens

sintered at 1600°C (a) ZrO,-free and (b) 10vol%
of ZrO, addition. m-, t- and ¢-ZrO, indicate
monoclinic, tetragonal and cubic phases of ZrO,.
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Fig.2 Relation between the relative density of the

sintered bodies and MgO content in the starting
composition. Margins of error in relative density
are = 5% and & 2 % for Zr-free and ZrO,-added
MgO 50mol% specimens (M50 and M50Zr10)
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Fig.3 Relation between the relative density of the
sintered bodies and sintering temperature.
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SEM micrographs of the fractured surface of the sintered bodies fired at 1600°C.
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Fig.5 Photographs of the fractured surface of the sintered bodies after the slag
corrosion test. Except for Cr10 fired at 1500°C, the specimens fired at 1600°C

were indicated.
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Fig. 6 EDX line analyses of the fractured surface of the sintered bodies
fired at 1600°C after the slag corrosion test. Left side: sintered body,

right side: slag.
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Formation of High-density Texture of Carbon Containing Refractory
by Much Addition of AL;SiC,

Yasuhiro Hoshiyama* and Akira Yamaguchi
Okayama Ceramics Research Foundation

Abstract

As a basic research for application of Al,SiC,,
densification of refractory was tried by using
Al1;SiC,y which reacts with CO gas from carbon at
high temperature. AL,SiCy powder was added into
the matrix of Al,Os-C based refractory. and it was
heated at high temperature in reducing atmosphere.
At high temperature, porosity of the refractory
decreased remarkably and high-density texture was
formed by densification reaction of Al;SiC,. The
reaction products were observed in a microstructure
of the densified samples and filled pore efficiently
in its matrix texture.

1. Introduction

There are five compounds of AlSiC,. Al;Si,Cs.
ALSi1,Cq. ALSisCe and AlgSiCy in Al-Si-C system.
AlSICy is expected as a material for new
refractories. because it is stable in a wide range of
temperature and has high melting point (2037°C")
and high slaking resistance”. Through recent study,
it became clear that the porosity decreased in

Al,O,~C

I H e
SiC addition Al,SiC, addition

Apparent porosity /%

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500

Temperature /°C

14
12 r
10

MgO-C

Al,SiC, addition
Al addition

Apparent porosity /%

0 500 1000 1500
Temperature /°C

o N Ao
T

Fig. 1 Densification effects of Al;SiC, addition on
carbon containing refractories **.

A|203 +C

AN )
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sic+C

EAI), ALO(G)

]
L

LA _ -

Fig. 2 Schematic model of reaction mechanism
of ALSIC, in carbon containing refractory at

high temperature .

MgO-C or Al,Os-C refractories containing AlySiCy
at high temperature and this densification effect
were larger than that of
aluminum or silicon carbide. as seen in Fig. 17,

The densification effect is thought to be
brought by vaporization of aluminum component
from Al,SiC, and re-condensation at pore in the
texture as alumina and carbon. Fig. 2” shows a
model of the densification reaction mechanism of
ALSiCy in the carbon containing refractory at high
temperature. The complete reaction formula is
shown in equation (1), and the elementary reactions
are shown in equation (2) to (5) "

ALSICy(s)+6CO(2)=2A1,05(s)*+SiC(s)+9C(s) (1)

ALSICy(s)=4Al(g)+SiC+3C(s) 2)
ALSiC4(s)+2CO(g)=2A1,0(g)+SiC+5C(s) 3)
2Al(2)+3CO(2)=A1,05(s)+3C(s) (4)
ALO(g)+2CO(2)=A105(s)+2C(g) ()

In this study. in order to make more effective
use of the densification effect of Al,SiC,. addition
of much ALSiC,; on AlLO;-C based refractory was
tried to form high-density refractory texture with a
few pore at high temperature.

2. Experimental Procedure

Al;SiC, powder was prepared by the following
methods. Aluminum powder. silicon powder and
carbon black were weighted in a theoretical
composition and dry-mixed by using a ball mill for
10 hours. The mixed powder were placed in a
carbon crucible and heated at 1700°C for 3 hours in
argon atmosphere. The composition of the heated
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Table 1 Composition of AL O;-C based brick

samples (masst)
Sample No. 1 2
Fused alumina -Tmm 60 60
-75Uum 25 -
Flake graphite =150 um 15 15
AlSiC, -20 4 m - 25
Phenol resin ex.4 ex.4
Hexamethylenetetramine ex.0.4 ex.0.4
Air atmosphere
Al,0; crucible /
Electric
furnace

Graphite powder

sample

Fig. 3 Schematic diagram of heating test in
reducing atmosphere.

powder was a single-phase of Al;SiC4, and its
average particle size was 8um after ball milling for
10 hours. Al4SiC4 powder prepared in this method
was used for the following experiment.

Table 1 indicates the composition of the
ALOs-C samples. Electric fused alumina and flake
graphite were used. AlSiC, powder was added
instead of alumina powder. Novolac type phenol
resin was used as a binder and hexamethylene-
tetramine were added as a hardening agent. Brick
samples were prepared with heating at 200°C for 6
hours after mixing and pressing.

The brick samples were cut off to 20x20x
20mm size and putted into the crucible which was
filled by carbon powder, and heated at various
temperatures in air atmosphere electric furnace as
shown in Fig. 3. After heating, mass change.
porosity, density and microstructure of the samples
were examined.

3. Results and Discussion

Fig. 4 shows the mass changes of the samples
during heating in the reducing atmosphere at
various temperatures for 2 hours. In the case of
No.2 which contains Al4SiCy powder, remarkable
mass gain is observed above 1200°C. Therefore, the
reaction of the equation (1) is considered to be
occurred with mass increase above 1200°C.
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Fig. 4 Mass change of the brick samples during
heating in the reducing atmosphere for 2 hours.
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Fig. 5 Apparent porosity of the brick samples
after heating in the reducing atmosphere for 2
hours.
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Fig. 6 Bulk density of the brick samples after
heating in the reducing atmosphere for 2 hours.

Bulk density /g.cm™

Fig. 5 shows the apparent porosity of the
samples after heating at various temperatures in the
reducing atmosphere. The porosity increases at
800°C depends on the thermal decomposition of the
phenol resin. The porosity of No.l sample which
does not include Al;SiCy increases with rising of
temperature. In contrast, that of No.2 sample which
contains Al,SiCy; powder decreases remarkably
above 1200°C, and then the porosity after heating at
1500°C is 7% lower than that of No.1 sample , and
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Fig. 7 Apparent porosity of the brick samples after heating in the reducing atmosphere
as a function of holding time at several temperatures.

at the same time, bulk density increases
considerably as seen in the Fig. 6.From these, it is
understood that Al,SiC, powder densifies the brick
texture efficiently with the mass increasing reaction
above 1200°C.

Fig. 7 shows change of the apparent porosity
of the brick samples after heating in the reducing
atmosphere as a function of holding time at various
temperatures. In the case of 800 and 1000°C. the
porosity of both samples increases gradually with
prolongation of heating time. This tendency is
considered to mean that carbon in the brick sample
is oxidized gradually with increasing of heating
time. Fig. 7 also indicates that porosity increase of
the sample containing Al,SiC, is smaller than that
of the other, and then it is thought to show that
Al;SiCy has a slight antioxidation or densification
effect even at low temperature.

In the case of 1200°C, the apparent porosity of
No.2 sample containing AlSIC, decreases with
prolonging heating time. Therefore, the react is
recognized to progress gradually according to
increase of heating time at1200°C. The decrease of
porosity becomes to be more clear at 1500°C, and
then the apparent porosity of No.2 sample decreases
to around 4% by maintaining for 20 hours at
1500°C.

Fig. 7(d) also indicates that a decreasing rate
of the porosity of No.2 sample is reduced above 6
hour of holding time at 1500°C. That means the
densification reaction becomes less progressed to
the right side in the equation (1) according to
decrease of the apparent porosity. This tendency is
recognized to be caused by reduce of diffusion rate
of CO gas through the open pore of the sample,
when the apparent porosity becomes lower.

Fig. 8 and Fig. 9 show the optical micrograph
of the No.l sample without AlSiCs and No.2
sample containing AlSiCy, respectively. after
heating at 1500°C for 20 hours. In the Fig. 8, many
micro-pore or micro-void is observed among
alumina and graphite particles. In comparison, in
the case of No.2 sample which contain Al;SiC,.
remained AlSiC; particles and formed new
products are observed among alumina and graphite
particles as shown in Fig. 9. The reaction products
are composed of fine particles with different
brightness less than 10um size. and then almost
completely fill the pore in the texture. These fine
particles exist in small gaps less than Spm in
width. It is assumed that the vaporization-
condensation reaction as shown inequation (2) to
(5) and Fig. 2 progresses and provides the
high-density texture.
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Fig. 8 Microscopic texture of No.1 sample after
heating in the reducing atmosphere at 1500°C
for 20 hours.

4. Conclusion

The high-density texture refractory with a few
pore was formed from the Al,O5-C based material
with a lot of Al;SiCy4 by heating at high temperature.
The conclusions are as follows.

(1)The densification reaction progresses above
1200°C in the brick sample containing a lot of
AlSiCy, and the porosity of the brick sample
decreases.

(2)This tendency is observed more remarkably with
rising temperature.

(3)The texture of the sample becomes more densely
by holding for a long time at high temperature. The
apparent porosity of the sample containing Al4SiC,
decreases to around 4% at 1500°C for 20 hours.
(H)In this densified sample, the reaction products
are composed of fine particles with different
brightness less than 10wum size. and then almost
completely fill the pore in the texture.

(5)These fine particles exist in very small gaps less
than Sum in width. [t is assumed that the
vaporization-condensation reaction progresses and
provides the high-density texture.
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Fig. 9 Microscopic texture of No.2 sample after
heating in the reducing atmosphere at 1500°C
for 20 hours.
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Effects of various doping elements on synthesis
and characteristics of A1,SiC,.

Tomohiro Nishikawa , Yasuhiro Hoshiyama, and Akira Yamaguchi
Okayama Ceramics Research Foundation

Abstract

In  recent carbon-containing  refractory
technology, a development of anti-oxidant, which is
superior to conventional additives. for inhibiting an
oxidation of carbon substances is urgent necessity.
The study is the fabrication of carbides, AlSiC,,
possessive high anti-oxidation performance by
doping various elements, iron, titanium and
zirconium.  Iron-doped Al4SiCs powders was a
composite of AlLSiCy-iron alloy.  Anti-oxidation
performance of given composites at 1000°C was
four times higher than that of bare-Al,SiC,.
Titanium or zirconium dopants might form ternary
carbides by reacting with main ALSIC; body. A
formation of ternary carbides was disadvantage for
an enhancement of anti-oxidation performance. A
spark plasma sintering by using iron-doped Al;SiC,
powders was revealed an effect as an auxiliary
agent to fabricate a dense Al;SiC, sintered-body.

1. Introduction

Oxidation wear of carbon is the biggest
problem that should be solved in the
carbon-containing refractory. Effects of Al,SIC,
added to the refractory have been studied.” It is
useful not only anti-oxidation of carbon, but also a
formation of a surface layer, an enhancement of
physical properties and a decrease of porosity under
heating condition of the refractory.” ALSIC, is
oxidized to form carbon, alumina and silica as
shown in the equation (1).

ALSiC, (s) +8CO(g) =
2A1,0,(s)+Si0, (s) + 12C(s)

However, its process was proceeded in the two
stages as shown in Figure 1; the first is the
oxidation of aluminum:

ALLSIC,(s) + 6CO(g) = 2A1,0 () + SiC(s) + 9C(s) »
the second is that of silicon:
SiC(s)+2CO(g) = SiO,(s) + 3C(s) -

Namely. an anti-oxidation performance of
complex carbide such as Al;SiC, is better than that
of carbide consisted of only one metal. Therefore.
an introduction of a third component in ALSIC,
might lead to an enhancement of anti-oxidation
property of them.

s 1700
T ausi€andn S o) Lugeond-
) ALOK) ALD1+L0)
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= _— i RN
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|
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Fig. 1 The equilibrium partial pressure of

gas species in Al-Si-O-C system. *

A synthesis of Al;SiC4 containing another
metal(M) has been tried in this study. The
candidates of M are the metals, titanium (e.g..
Ti,AIC, * or Ti3SiC, ). iron (e.g.. FesSiC ©). and
zirconium (e.g., ZrnAlCs 7), which composed the
binary carbide with aluminum or silicon. There
are no investigations for synthesis of these ternary
carbides, Al-Si-M-C or M-AlSiCy systems. We
focused about synthesis of the ternary carbides and
studied the anti-oxidation performance of the
carbide in the carbon-containing refractory.

In addition, we described a doping effect of
another metals on densification of Al;SiC, compact
by sintering.

2. Experimental procedures

Each powder of aluminum (AC-2500, 30 um,
99.3%, Toyo Aluminum K. K.), silicon (-75 um,
98-99%. KINSEI MATEC Co. Ltd.), flake graphite
(98%. -#200, MARUTOYO Co. Ltd.), zirconium
(99%, Wako Pure Chemical Industries, Ltd.),
titanium (99%, -#325, Mitsuwa Chemicals Co. Ltd.).
and iron (99.9%, -45 um, Wako Pure Chemical
Industries, Ltd.) was used without further
purification. Tabie | shows the molar amounts of
each ingredient including metal dopants which
corresponded with the stoichiometry of Al;SiC,.

Table 1. The molar ratio of each ingredient for
ALSIC, synthesis (x=0.01, 0.03 and 0.1 only for
iron).

Without Doping elements
doping Titanium Iron Zirconium
Additive / x — X X X
Aluminum 1.00 1-x 1-x 1-x
Silicon 0.25 0.25 0.25 0.25
Flake graphite 1.00 1.00 1.00 1.00
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The molar ratio of the dopants was 1%, 3% and
10% only for iron. The molar ratio of aluminum
was decreased with increasing that of dopants.

Figure 2 illustrated processes of a synthesis of
AlSiCy. The mixture of each ingredient were
dry-mixed by using an alumina ball mill during 20
hours. A heating of the mixture in a carbon
crucible was carried out at 1700°C with the heating
rate of 10°C min™ during five hours in 1 L min™ of
argon flow. A furnace was cooled down to room
temperature by itself. After synthesizing, ALSiIC,
powders were dry-crushed by using an alumina
ball-mill during 20 hours.

- Dry mixing - Dry crushing -

20 hours 1700°C 20 hours
10°C/min
5 hours
Carbon crucible
Ar folw

Fig. 2 A synthesis process of AL;SiC,.

An evaluation of an anti-oxidation property of
as-synthesized doped-Al;SiC4 powders was based
on a thermo-gravimetric, TG, profile (EXSTAR
TG/DTA6000, Seiko Instruments Inc.) recording
from room temperature to 1300°C with heating rate
of 10°C min" under 200 ml min" of air flow.
X-ray diffraction, XRD, patterns of as-synthesized
doped-Al,SiC4 powders were recorded in the range
of 26=10-70° with a scanning rate of 2° min" by
X-ray diffractometer (RINT2200, Rigaku Denki K.
K.).

Spark plasma sintering, SPS (Dr. Sinter,
SPS-820S, SPS Syntex Inc.) experiment was
performed in a carbon die tamped ALSICy powders
which applied 30 MPa of pressure at 1700°C with
30°C min". The measurement of an apparent
porosity and apparent density of AlSiCy sintered
bodies was carried out by using Archimedes
method.

Microstructures of Al;SiC4 powders and their
sintered bodies were observed by a scanning
electron microscope, SEM (JSM-6490. JEOL Co.
Ltd.)). Element mapping on SEM images was
located using an energy dispersive X-ray detector
(EDAX Genesis 2000, AMETEK Inc.) equipped
with SEM.

3. Results and discussion

The XRD patterns of titanium, iron, and
zirconium(1%)-doped ALSICy; were shown in
Figure 3. Each pattern was mainly attributed to
the diffraction pattern of Al4SiCy. There were no
peaks of carbides which derived from M-AI-C, and
M-Si-C systems. Zirconium addition for AlSiC,

80

synthesis led to a noticeable appearance of the peak
of aluminum carbide, Al;,C;, at 55.2°.

—T 7T T T .
- Zr(1%) - @ ALSIC,
L I I I { a A,

N S 1 @ Graphite
B Fe(1%)
| . .

Ti(1%)

JMM

Intensity / counts

Bare AlBiC,

10 20 30 40 50 60 70

2 theta / degree
Fig. 3 XRD patterns of bare, Ti-, Fe-,
and Zr-doped ALSiC,.
However, titanium- and iron-doping

suppressed an appearance of peaks of Al,C; in their
XRD. The peak intensities of Al,C; at 55.2° were
summarized in Figure 4. Each intensity was
estimated by subtracting a baseline which was no
peak at 55.2° in case of bare ALSiC4. Titanium
and iron additions were more effective to avoid a
production of Al,C; than zirconium addition.

160
140
120
100
80
60
40
20

Peak intensity of AkC3/ counts

Ti Fe Zr
Doping elements

Fig. 4 Peak intensities of ALC; in XRD
patterns of Ti-, Fe-, and Zr-doped ALSiC; .

No peaks of products derived from titanium
and zirconium were found in their XRD patterns.
The secondary maximum peak, 41.5° in these
patterns was shifted to the lower degree (No figure
was assigned.).  These suggests titanium and
zirconium were fixed in ALSIC, lattice, that is. a
formation of Al-Si-M-C system were implied by
these results. On the other hand, iron-doping left
unreacted graphite which the peak at 26.5° showed
in the XRD pattern. Other details of iron-doping
mentions the following sections.
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Fig. 5 TG profiles of iron- (a), titanium-doped
ALSICy (b).

TG profiles of 1%- and 3%-doped Al;SiC,
added iron and titanium were shown in Figures 5.
The profiles of iron-doped Al;SiC, was represented
similarly to bare-Al;SiCy until 600°C. A weight
increase of bare-Al;SiC, initiated from 700°C. TG
profile of 1% iron-doping powders was same as that
of bare-AlsSiCy except for 1000-1200°C.  The 1%
iron-doping was unavailable to modify an
anti-oxidation performance. The profile of 3%
iron-doping powders was almost flat until vicinity
of 900°C. A steep increase on TG curve of 3%
iron-doping powders was over 950°C. Initiation
temperature of weight increase by iron doping of
3% was shifted 100°C higher than bare-AlSiC,.
On contrary, TG profiles of titanium-doping
powders were same as that of bare-Al,SiC, until
700°C. Over 700°C, they showed weight changes
in earlier stage rather than bare-AlSiCy. TG
profiles of zirconium-doping powders were same as
that of titanium-doping. An iron-doped ASC was
achieved  considerable improvement of an
anti-oxidation performance with comparison to
bare-Al,SiC,.

Figure 6 illustrated XRD patterns of 1, 3, and
10% iron-doped AlSiC,.  There were no changes

on XRD patterns which attributed to ALSIC, even
10% iron doping. Characteristic differences were
the appearance of the peaks at 26.5° and vicinity of
45°,  The former was the presence of residual
graphite. The later was the production of iron
alloy. The extra figure attached to Figure 6 shows
the enlarged view of 26=44-46°. The peaks were
attributed to two kind of alloys, Fe;Si and Al-Fe-Si.
The production of these alloys increased with
increase of the amount of iron-doping.
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Fig. 6 XRD patterns of (a) bare, (b)

iron(1%)-, (©) iron(3%)-, and (d)
iron(10%)-doped ALSiC,.

Figure 7 shows TG profile of 10% iron-doped
AlSiCy. TG profiles of bare, 1% and 3%
iron-doped Al;SiC; were exhibited again. TG
curve of 10% doping was recorded a slight decrease
of weight in the range of 700-900°C.  This
phenomenon was reasonable if residual graphite
disappeared by an oxidation. This curve was
turned to gradual upraises near 900°C.
Consequently, an initiation temperature by
oxidation of 10% doping was shifted to 1000°C.
Mass changes of ALSICy at 1000°C was shrunk
50% for the 3% iron-doing and 75% for the 10%
iron-doping.  An anti-oxidation performance by
iron doping was attributed to the production of iron
alloys. It was revealed that an iron-doping was
favorable to an enhancement of anti-oxidation
performance for Al;SiCy.
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Fig. 7 TG profiles of bare, iron (1%)-, iron
(3%)- and iron (10% )-doped ALSiC,.

Powders of bare and iron-doped Al,SiC,; were
sintered by a spark plasma sintering technique. As
shown in Figure 8. a relative density by a sintering
condition, which was without holding time at
1700°C, was 77.6% for a bare-Al,SiC,. It
increased up to 83.9% by using ASC-iron alloy
powders.  An apparent porosity decreased with
27% of shrinkage by a coexistence of the
iron-alloys.  Intact morphology of each sintered
body by SEM images represented a bonding
between particles (Figures 9).  These results
suggested the iron-alloys was accelerated the
densification of Al;SiC, sintered body.
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Fig. 8 Relative density and apparent porosity
of bare and iron-doped ALSiC, bodies sintered
through a spark plasma sintering.
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ALSIC,
1%-doped, (c)Fe 3%-doped.

sintered bodies: (a) bare, (b)Fe

4 Conclusions
Synthesis of Al-Si-M-C or M-ALSiC, systems

by starting from elemental substances: aluminum,

silicon, flake graphite, and M (=titanium, iron and
zirconium) was studied, and the obtained results are
as follows:

e 1% addition of titanium and zirconium on
ALSICy synthesis process has a possibility of
formation of an Al-Si-M-C system.

e The addition of iron on AlSiCy synthesis
process led to a formation of Al;SiCy-iron alloy
assembly.

e  An anti-oxidation performance of Al;SiCy-iron
alloy by TG measurement was expected the
enhancement of 100°C higher than Al;SiC,
single body at least.

e Sintering property of iron-doped AlSiCy
powders using SPS technique showed a
potential of iron alloys as an auxiliary agent.
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Sintering of Alumina-Silica high temperature materials

Tadayuki Koumoto*. Akira Yamaguchi and Yasuhiro Hoshiyama
Okayama Ceramics Research Foundation, Okayama. Japan

Abstract

Various ratios Alumina-Silica powders were
pressed to form compacts, and the compacts were
heated at 1200 to 1500°C. Only alumina compact
was fully densified by heating above 1300°C, but
densification of the compact was suppressed with

increasing of the amount of added silica till 2mass%.

On the other hand, the densification was promoted
with increasing of the amount of added silica more
than 2mass% below 1400°C at which alumina does
not react with silica.

1. Introduction

It has been clarified that in the case of kaolin.
which is a clay mineral, composed of alumina and
silica, mullite is formed above about 1000°C.

But. when using high-purity ultra fine alumina
and silica powder, unprecedented phenomenon was
observed. Textures were densified after [h heating
at 1200 to 1400°C despite no mullite formation, on
the contrary, the densification was suppressed in
adding a small amount of silica. However, when
mixture of high-purity ultra fine alumina and silica
powder was heated at 1200 to 1400 °C, its
densification was suppressed by adding a small
amount of silica. but it was promoted with
increasing of the amount of added silica more than
2mass% despite no mullite formation. The purpose
of this study is to elucidate this phenomenon.

2. Experimental Procedure
2.1 Test samples
2.1.1 Starting material

Ultrafine alumina powder TM-DAR (average
grain size about 0.17 u m. 99.99% purity) and
ultrafine silica powder UFP-30 ( average grain size
about 0.1 u m. 99.9% purity) were used as the
starting materials. Various ratios alumina-silica
powder mixtures were prepared by ball milling in
ethanol for 20h after drying and crushing.

2.1.2 Pressureless sintering

Alumina-silica powder mixtures were uniaxial
pressed at 98MPa pressure to form compacts. The
compacts were heated at various temperatures by
electric furnace (rate of temperature increase: 10°C
/min, keeping time: 1h, in air). The sintered bodies
were cooled down to room temperature in the
furnace.

2.1.3 SPS (Spark Plasma Sintering)

Columnar sapphires (single crystal of alumi-
num oxide) were tamped into compacts that were
consisted of only alumina powder and alumina with
2mass% silica, respectively. The compacts were
sintered by SPS (rate of temperature increase: 30°C
/min, heating temperature: 1400°C, pressure level:
SOMPa, heated in vacuum). After SPS sintering, the
obtained bodies were polished and thermally etched
in air at 1400°C for 10h.

2.2 X-ray powder diffraction

Alumina and silica were mixed with mullite
composition (a reaction product of alumina and
silica, AlLO;=71.8mass%. Si0,=28.2mass%). The
mixtures were heated at 1200°C to 1500°C and
crushed. Analyses of their crystalline phases were
carried out using X-ray powder diffraction.

2.3 Physical
observation

The sintered bodies heated below 1400 °C
were used to remove the influence of mullite
formation. For the sintered bodies, liner change.
apparent porosity and pore size distribution were
measured and the microstructure was observed by
field emission scanning electron microscopy.

properties and Microstructural

3. Results and discussion
3.1 X-ray diffraction analysis

Fig.1 shows X-ray diffraction patterns of the
sintered bodies heated at various temperatures. In
the bodies heated at 1200 °C. peaks of only
corundum were observed, but peaks of silica were
not observed. The silica is considered to be
amorphous. Transition of amorphous silica to
cristobalite occurred at 1300 °C and at 1400 °C
relative  intensity of cristobalite increased.
Mullite were formed by reaction of alumina and
silica at 1500°C.

3.2 Physical properties

Fig.2 shows change of the apparent porosity
and linear length of the bodies sintered at 1400°C
with silica content and this heating temperature at
which effects of silica was most noticeable.
Addition of silica till about 2mass% to alumina
suppressed densification of the sintered bodies.
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Fig. 1 X-ray diffraction patterns of the

alumina-silica powder heated at various tempe-
ratures for 1h. (composition of powder is same
with mullite )

However. with the quantity more addition the
densification was accelerated. Apparent porosity
and linear expansion of the body with 2mass%
silica were 40% and 18%, respectively. Those of the
bodies sintered at various temperatures between
1200°C and 1300°C were almost same trend with

the body sintered at 1400°C.
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Fig. 2 Change of apparent porosity and linear
length of the alumina-silica body sintered at
1400°C for 1h.
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3.3 Pore size distribution

Fig.3 shows the result of pore size distribution
of the sintered body with 2mass% silica. Sharp peak
was observed in the range below 100nm pore
diameter. Average pore diameter of the sintered
body was 54nm and was smaller than particle size
of alumina raw material. Gaps among alumina
particles are considered to cause formation of pore.

o
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o Average pore diameter
=54nm

o
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Log differential intrusion / mi-g-!
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Pore size diameter / nm

Fig. 3 Pore size distribution of the body which
contained 2mass% silica and was sintered at
1400°C for 1h.

3.4 Thermal expansion

The compacts heated at 800°C for lh were
used for measurement. Linear length of the
compacts did not changed before and after heating.
Fig.4 shows the results of thermal expansion
measurement. The shrinkage of alumina compact
and silica compact started at about 1000°C and
about 1200°C, respectively. The shrinkage of the
compacts with silica of 1mass% and 20mass% were
smaller than those of alumina compact and silica
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Fig. 4 Change of thermal expansion coeffici-
ent versus temperature with temperature.
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compact. Thermal expansion curve is close to that
of alumina compact at below 1000°C. but above this
temperature, difference occurred between their
thermal expansion and increased with increasing
temperature. The shrinkage of the compact with
Imass% silica started at about 1000°C. This is
similar shrinkage with that of the alumina compact.
On the other hand. the shrinkage of the compact
with 20mass% silica started at about 1000°C. This
is similar shrinkage with that of the silica compact.

3.5 Change of microstructural observations

Fig.5, Fig.6, Fig7 show FE-SEM images of
sintered body’s cross-section. Abnormal grain
growth was observed in the sintered body without
additive heated at 1400°C. On the other hand. in the
body with 2mass% silica, grain growth was
suppressed and there were many pores. There still
exists noticeable pores in the sintered body with
10mass% silica, but the body was densified than
that with 2mass% silica. The densification is
considered to be accelerated when silica content
exceeds 2mass%.

3.6 Microstructural observations of single-cry-
stal /poly-crystal boundary

Fig.8, Fig.9 shows the FE-SEM images of
single-crystal/poly-crystal boundaries in the only
alumina sintered by SPS. Abnormal grain growth
was observed in the compact without additive and
single-crystal/poly-crystal boundaries were conv-
oluted and alumina grains in poly-crystal regions
were trapped within growing single crystal. It is
considered that driving force of crystal growth by
solid phase reaction is due to the surface energ
difference between poly-crystal and single-crystal.
Because smaller crystal particle which relatively
have large surface energy, it is unstable and easy to
be annexed to bigger crystal particle.

On the other hand, grain growth was not
observed in silica added sintered body and
single-crystal growth was suppressed in spite of the
existence of fine alumina grains which have high
surface energy in poly-crystal regions.

Kinoshita?’ and Monahan er al.” studied the
growth of single crystal alumina in polycrystalline
alumina and magnesia doped polycrystalline
alumina. Their studies indicate that doped magnesia
decreases the rate of boundary mobility and
suppresses the grain growth. It has been known that
Zener pinning effect by second phase particles
scattering in uniform grain sized sample suppresses
boundary migration and grain growth. In the matrix
globular second phase particles of radius r are
scattered, grain boundary area decreases by 7 /7.

Fig. 5
additive heated at 1400°C for 1h. (X 10000)

- ‘ ‘. - o . 4 ;
0 ‘;?\\»-b ‘ b (= 1t . k] .
DS ™ bl SN <1 0010000

Fig. 6 FE-SEM image of 2mass% SiO,-added
Alumina heated at 1400°C for 1h. (X10000)

. i

Fig.7 FE-SEM image of 10mass% SiO,- added
Alumina heated at 1400°C for 1h. (X 10000)
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Because grain boundary area 7 »’ is required to
separate grain boundary from second phase particles
and it causes the increase of free energy, the pinning
pressure that prevents boundary migration works
between particles. Zener pinning pressure per unit
volume followed the equation,
A Gpin = _ﬁ
2r

where f'is volume fraction of second phase particles
and o is grain boundary energy per unit area
where it intersects with an second phase particle,
respectively.” This equation indicates that Zener
pinning pressure depends on particle radius and
volume fraction. Large pinning pressures consider
to be produced by increasing volume fraction and
reducing the size of second phase particles.

In this case, scattered silica particles between
alumina particles probably works as second phase
particles and pinning effect is responsible for the
similar phenomenon.

Fig. 8 Single-crystal/poly-crystal boundary in
undoped Alumina. (FE-SEM X20000)

(Sapohire)

3:-:,‘?i 5 /. ; 7 = p f g
§_ BN ST 15,00 x20,000  ipm
Fig. 9 Single-crystal/poly-crystal boundary in
SiO,-doped Alumina. (FE-SEM X20000)
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4. Conclusions

Sintering of the alumina-silica mixture was
studied, and the obtaine results are as follows.
(1) Mullite is not formed below 1400°C in spite of
using high-purity ultra fine alumina and silica
powder.
(2) The effect of silica for densificatrion of
alumina is different depending on silica content.
Silica prevent the densification of the compact in
the case of small amount addition, but it accelerates
the densification when its content exceeds 2mass%.
(3) Gaps among alumina particles are considered
to cause formation of pore in silica doped alumina.
(4) The phenomenon that doped silica suppresses
the grain growth of alumina is probably due to the
Zener pinning effect.
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Effect of Apparent Porosity on Generation of Hexavalent Chromium
Compounds in Refractories Including Cr,O; for Waste Melting Furnace

Shinji Mizuhara* , Takeo Urabe , Akira Yamaguchi, Tomoyuki Maeda
Ryukoku University , Okayama Ceramics Research Foundation

Abstract

There is a concern that hexavalent chromium
compound is generated in Cr,Os refractories after
use at waste melting furnace. In this study, the
sintered objects including Cr,O; of apparent
porosity varied was made and the effect of apparent
porosity on hexavalent chromium compound
generation was investigated. As a result, it lead to
the suggestion that the effect of apparent porosity
on hexavalent chromium compound generation was
small and that the effect of Cr,Os; content in
refractories was strong.

1. Introduction

In recent years, the disposal of waste by melting
has spread, with the aim of reducing the presence of
dioxins and prolonging landfill lifetimes. As of
2009, there were 211 facilities for waste melting
disposal in Japan. Slag utilization rate is more than
about 80%". Japanese Industrial Standards related
to slag utilization were established in 2006, and it is
thought that melting disposal of waste will continue
to increase’’ . However, damage to refractory
materials used in melting furnaces is a major
problem in this process”. Various high corrosion
resistance refractory materials including Cr,Os are
being used in waste melting furnaces to solve this
problem. There is however the concern that
hexavalent chromium (below, Cr(VI)) compounds,
which are harmful to the human body. are generated
during melting from the slag and Cr,O; refractories
after use™®. The elution of Cr(VI) exceeding soil
environmental standards has been confirmed from
the melt slag produced in waste melting furnaces'.
There have been few studies on the mechanism of
generation of these Cr(VI) compounds. In addition,
there has been little study on the effects of the
apparent porosity in refractory materials on this
process.

In this study, sintered samples including Cr,Os,
the apparent porosities of which were changed,
were formed using plasma sintering (below, SPS).
Rotary corrosion tests of these objects were carried
out using a composite slag, and the effect of the
porosity ratio on the generation of Cr( VI )
compounds was investigated.

2. Materials and Methods
2.1 Sample preparation
The composition ratio of Cr,O; and Al,Os used is

shown at Table 1. The reagents used were CryOs,
special grade chemical (Wako-Junyaku) and Al,Os,
with the trade name of Taimikuron. with a purity of
99% and mean particle size of 0.2 pm( Daimei
Kagaku-kogyo). The powder was made into a 10
vol% suspension using ethanol and stirred for 24
hours with a magnetic stirrer. After evaporation and
drying, the material was lightly crushed with an
alumina mortar and sintered using SPS. The
sintering conditions included a heating rate of
30°C/min, a pressure of 30 MPa. a hold time of 10
minutes and a vacuum atmosphere. The sintering
temperature was adjusted in the range of 1200 to
1350 °C to obtain the apparent porosity required.

Table 1 Mixing ratio of sample
Sample No| Cr,05(mass%) | Al,O5(mass%)
CA28-0 20 80
CAb5-0 50 50
CA82-0 80 20
Cr100-0 100 0
CA28-20 20 80
CAb5-20 50 50
CA82-20 80 20
Cr100-20 100 0

2.2 Corrosion test

The apparent porosity of the sintered object
obtained as described above was measured by the
Archimedes method. It was subsequently ground to
form test samples with dimensions of 40 mm height,
10 mm width and 10 mm thickness. Corrosion tests
with the composite slag were carried out on these
test samples. Four test samples were used for each
test. Rotary corrosion tests were carried out using
the test device shown in Fig. 1 at a temperature of
1500 °C, test time of one hour. rotational speed of 3
rpm and using a slag amount of 1.5 kg. The
composite slag used for the tests included 41% CaO.
31% SiO,, 25.5% AlLOs and 2.5% Na,O generated
in the waste melting furnace. The slag basicity of
CaO/SiO; was 1.32.

2.3 Method

The contents of the sample and the slag after the
test were measured by the calibration curve method
using an X-ray fluorescence analyzer (SHIMADU
EDX-800HS). The chemical form of the Cr(VI)
compound generated in the samples after the
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corrosion tests was identified using XRD (RIGAKU
RINT-2000). The X-ray source used was CuKa. The
diffraction conditions included a voltage of 40 kV,
current of 100 mA , scanning speed (26) of 2°/min
and analysis range (20) of 3~90°. An elution test
based on the Agency of Environmental Notification
No. 46” was carried out using the sample and slag
after the corrosion test. This elution test was
performed for a solid:liquid ratio of 1 : 10 and
horizontal shaking time of six hours using a 500 ml
polyethylene bottle. The suspension liquid after
shaking was filtered and the Cr(VI) concentration
eluted in the suspected solution obtained was
measured using Inductively Coupled
Plasma-Atomic Emission Spectrometry (Perkin
Elmer Optima-5300DV). The elution test was
carried out five times for each sample. An
exploratory experiment indicated that the eluted
Cr(VI) concentration was high. Therefore, the
elution tests were subsequently carried out using a
solid-liquid ratio of 1:100 in this study. Moreover,
the Cr(VI) content in the sample and slag after the
corrosion test was measured by method specified by
the Ministry of Environment Notification No. 19"
This was carried out by horizontally shaking a 5 g
sample in a 200 ml solvent in a polyethylene bottle
of 500 ml capacity for two hours. Filtration of the
suspension liquid after shaking was then carried out
and the Cr(VI) content was measured for the
suspension solution obtained.

"hermocouple Heat insulator

Heater

Platinum

Sample: x4

Fig.1 Outline of corrosion test device
3. Results and discussion
3.1 Slag

Table 2 shows the Cr,O; content in the slag after
the corrosion tests. There was a tendency for the
Cr-Oj5 content in the slag to gradually increase with
increasing Cr,O; content in the sintered objects for
either porosity. The Cr,O; content in the slag for
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20% porosity was a little higher than that for the
case of 0% porosity.

Table 2 Cr,0; content of slag after corrosion

test

Sample

0%(Porosity)

20%(Porosity)

CA28

0.029%

0.062%

CAdd

0.059%

0.065%

CA82

0.055%

0.075%

Cr100

0.049%

0.084%

Figure 2 shows the amount and elution
concentration of Cr(VI) in the slag (Table 2) as
measured by the elution test of the Agency of
Environmental Notification No. 46 and the Ministry
of the Environmental Notification No. 19. Thus, the
tendency in the case of the 20% porosity was for
both the amount and elution concentration of Cr(VI)
to increase since the Cr,O; content in the sintered
objects was somewhat higher than in the case of 0%

porosity.

1.4
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3
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© O
25 —@—0%-leachate
’s‘b 0.6 concentration(mg/L)
< E —A—20%-leachate
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o ——0%-content(mg/kg)
0.2 —B8—20%-content(mg/kg)
0

20 50 80 100

Cr,04 content of sintered sample(%)
Fig.2 Cr(VI) amount change in slag

3.2 Sintered objects

Table 3 shows the apparent porosity values of the
sintered objects as measured by the Archimedes
method. It can be seen that these porosity values are
generally similar to the value set. However, the
porosity of the sintered object with 0% set porosity
was not very close, with porosity of about 2-4%.
Table 3 The apparent porosity values of the
sintered objects as measured by the Archimedes
method

40

1 35

30

25

20

Sample | Porosity—0%| Porosity—20%
CA28 3.2%+0.5 18.3+0.8
CA55 45+04 196+14
CA82 2.5+04 19.5+1.1
Cr100 1.2+0.7 18.4+0.8
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Table 4 shows the contents of the slag
components in the sintered objects after the
corrosion tests. Thus, it is understood that a quantity

of slag elements is contained in each sintered object.

Moreover, a significant amount of slag compounds
is also contained in the sintered object with 0%
porosity. As explained previously, the sintered
object with 0% set porosity actually had a porosity
of 2-4%. It is thought that the slag compounds
permeate from the pores even for small porosities.
Table 4 Slag element content in sintered
samples after corrosion test

Sample Ca0(%) Si0,(%) Na,0(%)
CA28-0% 12.61 11.96 1.91
CA55-0% 9.23 11.04 1.88
CA82-0% 10.11 9.02 1.96
Cr100-0% 7.01 10.23 2.18
CA28-20% 10.86 11.57 2.06
CA55-20% 11.56 1.85 1.77
CA82-20% 10.12 8.88 1.88
Cr100-20% 13.04 13.79 2.27

Figure 3 shows the amount and elution
concentration of Cr(VI) in the sintered object in
Table 4 as measured by the elution test of the
Agency of Environmental Notification No. 46
and the Ministry of Environmental Notification
No. 19. The solid-liquid ratio of the elution test
was adjusted to 1:100. This is because the Cr(VI)
concentration in the leachate from the sintered
object was very high. Thus, both the amount and
leachate concentration of Cr(VI) had a tendency
to increase with increasing Cr,O; content in the
sintered object. Especially, in the case of 100%
CrOs content in the sintered object. both the
amount and leachate concentration of Cr( VI)
increased considerably compared to the case for
small amounts of Cr,Os. It was thus found that the
CryOs3 content had a major impact on the Cr(VI)
concentration. Moreover, there was not a significant
difference between porosities of 0% and 20%.

Figure 4 shows the XRD data for the sintered
object with 20% Cr,Os and 20% porosity after the
corrosion test. Thus, generation of the Cr( VI)
compound of CaCrO, was confirmed for both
sintered samples. The Cr(VI) compound of CaCrO;
is considered to be a general Cr(VI) compound
generated by the reaction between Cr,O; and the
slag. The temperature range of CaCrQO, generation
is 600-1000 °C*". It is therefore thought that the
CaCrOy is generated in the sintered object during
cooling after the corrosion test. Moreover, the
generation of the Cr(VI) compound of Ca;Al,CrO,
was confirmed except CaCrOy. Cay;AlCrOy; is very
stable and therefore it is thought that it is easy for

Cr(VI) leachate

CajAlCrOs to remain in the sintered object

. 910
regardless of temperature fluctuations™'” .
140 — —— _———
0%-leachate
120 concentration(mg/L)
—&— 20%-leachate
3 400 concentration(mg/L)
™ —©—0%-content(mg/kg)
£
5 80 —@— 20%-content(mg/kg)
2
©
T 60
o
(4]
c
3 40
20
0 |
20 50 80 100
Cr,0; content of sintered sample(%)
Fig.3 Cr(VI) amount change in sintered
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Fig.4 XRD result of CA28-20% sintered
samples

4 Conclusions

In this study, corrosion tests were conducted on
sintered objects containing Cr,O; from a composite
slag and the effect of apparent porosity on the
generation of Cr(VI) compounds was investigated.
The findings of the studies are shown below.
1) The effect of apparent porosity on the amount
and leachate concentration of Cr( VI )
compounds from both the slag and sintered
object after the corrosion test was small.
It was suggested that the effect of the Cr,Os
content on the generation of Cr(VI) compounds
was larger than the effect of the porosity.
In the sintered object, after the corrosion test.
the generation of the Cr(VI) compound of
CayAl,CrO)s which is very stable in the
temperature range of interest, was confirmed

3)
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except for the Cr(VI) compound of CaCrO,.
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