分析結果

< SO₃計算式>

ろ紙成分の影響を考慮するため、ブランクの分析を同様の操作で行い、この質量をBgとする。以下のようにして、 SO_3 の質量を求めることができる。

$$(S-B) / W \times 100 = (BaSO_4) \%$$

 $(BaSO_4) \% \times 0.3428 = (SO_3) \%$

表1 Na₂SO₄試薬を用いて分析した結果

<結論>

試料名	湿式分析(重量法)	機器分析(赤外吸収法)
	SO ₃ [質量%]	SO ₃ [質量%]
N-1	55.99	57.18
N-2	56.15	60.13
N-3	55.92	64.05
N=3の平均値	56.00	60.45

硫黄分の多い試料には、湿式分析法(JIS R 2016-1)が有効。 少ない試料には、分析時間の短縮が可能な機器分析法(JIS R 2016-2)が有効。

<コメント>

- ・事前にNa₂SO₄試薬を高温で焼成し、結晶水を除去、無水のNa₂SO₄試薬とする。
- •Na₂SO₄試薬のSO₃に換算した理論値は、SO₃=56.37%である。
- ・JIS R 2016-2による機器分析(赤外吸収法)の結果は理論値よりも4%ほど高い結果になった。
- ・一方、湿式分析(重量法)は、ほとんど理論値に近く、分析精度上問題はないと考えられる。
- ・(確認テスト) 一応、このわずかな違いを検討してみた。試薬中の Na_2O を、原子吸光法を用いて分析したところ、理論値43.63%に対して、 44.61%とやや高いことがわかった。

事前の焼成時に、SO3のわずかな揮発(ほとんど問題はない範囲)が影響した可能性を推定した。