MgO-C煉瓦稼働面の高温状態推定

1 はじめに

耐火物の溶損は稼働面に形成される反応層を介して進 行する場合が多い。反応層の成長速度と溶出速度が耐火 物の溶損速度を支配するため、その高温における状態を 知ることは重要である。

本研究では、組成分析に熱力学相平衡計算を組み合わ せることで、稼働面反応層の高温状態を推定する新しい アプローチ手法について検討を行った。微視的に不均質 な耐火物についても本手法が適用可能かどうか、その可 能性を探ることを目的として、骨材とマトリックスとか ら構成される不均質な微構造を有する耐火物について稼 働面反応層の高温状態推定を試みた。

2 実験方法

代表的な製鋼用耐火物であるMgOC煉瓦を検討対象とし、 取鍋スラグラインで使用されたMgOC煉瓦(C=10%)を 入手して稼働面反応層の解析を行った。使用後MgOC煉 瓦を切断して稼働面付近からサンプルを切り出し、鏡面 研磨の後に微構造解析を実施した。反応層の観察、分析 はSEM-EDSを用いて行い、分析結果から各成分を定量 化する際には、各元素の特性X線強度に関する検量線を 作製し、これを用いて含有量を求めた。得られた化学組 成から反応層の高温状態を推定するために、熱力学計算 ソフトFactSage (ver.6)を用いて相平衡計算および液 相の粘性計算を行った。

3 結果と考察

稼働面反応層のSEM写真(組成像)を図1に示す。 稼働表面に付着スラグとともにMgO骨材が突出してい る反応層が見られ、マトリックス先行型の溶損形態を示 している。低輝度のMgO骨材間を埋めるように高輝度 のスラグ成分が煉瓦内部へと侵入しており、原煉瓦組織 と反応層との境界付近には空隙が多く見られる。その周 辺では金属鉄も生成しており、MgO-C煉瓦に見られる 典型的な溶損形態を示している。図中には面分析の箇所 を赤枠で示しており、付着スラグおよびMgO骨材間に 侵入しているスラグの組成変化に着目して解析を行った。 **表1**に面分析の結果を示す。検出された元素は全て酸 化物に換算して表示してある。付着スラグおよび侵入ス ラグはSiO₂-CaO-Al₂O₃-MgO-FeO系であり、分析箇所に よってその組成比がかなり異なることがわかる。

図1 稼働面近傍のSEM写真(組成像)

表1 分析結果

分析 箇所	SiO₂	Al ₂ O ₃	CaO	MgO	MnO	FeO
1	22.9	7.8	43.4	9.3	4.9	10.5
2	22.4	11.9	39.4	9.4	4.0	12.1
3	16.0	18.5	35.7	8.6	4.7	15.1
4	19.7	17.8	38.0	6.8	3.9	12.5
5	16.1	19.7	32.6	12.0	4.5	14.9
6	16.1	18.7	30.9	14.9	4.8	15.2
7	18.0	13.9	30.4	18.9	5.5	15.0
8	10.7	23.2	29.2	13.7	4.5	18.3
9	13.8	18.8	27.6	8.5	2.1	26.5
10	20.9	18.3	45.5	8.7	1.7	5.1
11	19.7	27.9	34.3	6.2	1.6	10.6
12	13.2	42.1	38.3	6.6	1.5	0.3
13	19.6	36.7	39.6	4.7	0.9	0.3
14	17.7	37.9	39.6	5.4	1.0	0.3

図2 熱力学相平衡計算の結果例

表1に示した化学組成を用いて、各セクションの相平 衡計算を行った。計算結果の例を図2に示す。実炉の使 用温度域である1550~1650℃における主要な相を見る と、No.6は液相とペリクレースが共存、No.12は液相 のみとなっており、表面側のNo.6では固液共存状態、 内部側のNo.12では完全溶融状態の結果が得られている。

表2に、各分析箇所における1600℃の相平衡計算結果 をまとめて示す。反応層中に突出しているMgO骨材の 周辺(No.5~8)では固液共存状態にあり、析出して いる固相はMgOの固溶体で、その固相割合は10%前後 と見積られている。内部側(No.9~14)では液相のみ であり、1600℃において完全溶融していると推定され る。また液相生成温度は全ての測定箇所でほぼ同等で、 1200~1300℃程度となっている。この結果から、煉瓦表 面の温度が1200℃以下になると、稼働面反応層は完全に 固化することが推測される。

また表2には、化学組成から計算した液相(固液共存 の場合も液相のみで計算)の粘度も示してある。表面か らの距離を横軸にとってグラフ化すると図3のようにな り、600 µmより内部側(No.10~14)では表面からの距

表2 相平衡計算の結果

測定 箇所	状態	固相 比率 /mass%	固相種	液相生成 温度 <i>/</i> °C	液相の粘度 /poise
1	固液	8	MgOss,C ₂ S	1200	0.526
2	液	0	-	1250	0.564
3	液	0	-	1200	0.534
4	液	0	-	1200	0.619
5	固液	4	MgOss	1200	0.582
6	固液	8	MgOss	1200	0.589
7	固液	12	MgOss	1300	0.577
8	固液	8	MgOss	1200	0.546
9	液	0	-	1200	0.460
10	液	0	-	1200	0.730
11	液	0	-	1200	0.926
12	液	0	-	1200	1.205
13	液	0	-	1200	1.419
14	液	0	-	1200	1.326

離が増すほど粘度が増大する傾向が認められた。この結 果は、MgO骨材間の狭い隙間に存在している液相が更 に内部へと侵入すると粘度が増大することを意味してい る。狭い隙間に存在する液相の粘度が高くなると、それ 以上先には進めず侵入が止まることが想像され、煉瓦組 織へのスラグ侵入深さが粘度増大の影響を受けている可 能性がある。

4 まとめ

MgO-C煉瓦の稼働面反応層について、組成分析と熱 力学相平衡計算を組み合わせて解析した結果、反応層の 高温状態を推定することができた。付着スラグおよび侵 入スラグが高温下で液相のみか固液共存状態であるかを 推定でき、また液相の粘性を計算することでスラグ侵入 に関する情報も得ることが可能であった。稼働面解析の 新たなアプローチ手法として有用と思われる。

(副所長 星山 泰宏)